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Abstract

We investigate the approximability of the following optimization problem. The input is
an n × n matrix A = (Aij) with real entries and an origin-symmetric convex body K ⊆ Rn

that is given by a membership oracle. The task is to compute (or approximate) the maximum
of the quadratic form ∑n

i=1 ∑n
j=1 Aijxixj = 〈x, Ax〉 as x ranges over K. This is a rich and ex-

pressive family of optimization problems; for different choices of matrices A and convex bod-
ies K it includes a diverse range of optimization problems like max-cut, Grothendieck/non-
commutative Grothendieck inequalities, small set expansion and more. While the literature
studied these special cases using case-specific reasoning, here we develop a general methodol-
ogy for treatment of the approximability and inapproximability aspects of these questions.

The underlying geometry of K plays a critical role; we show under commonly used com-
plexity assumptions that polytime constant-approximability necessitates that K has type-2 con-
stant that grows slowly with n. However, we show that even when the type-2 constant is
bounded, this problem sometimes exhibits strong hardness of approximation. Thus, even
within the realm of type-2 bodies, the approximability landscape is nuanced and subtle.

However, the link that we establish between optimization and geometry of Banach spaces
allows us to devise a generic algorithmic approach to the above problem. We associate to each
convex body a new (higher dimensional) auxiliary set that is not convex, but is approximately
convex when K has a bounded type-2 constant. If our auxiliary set has an approximate separa-
tion oracle, then we design an approximation algorithm for the original quadratic optimization
problem, using an approximate version of the ellipsoid method. Even though our hardness re-
sult implies that such an oracle does not exist in general, this new question can be solved in
specific cases of interest by implementing a range of classical tools from functional analysis,
most notably the deep factorization theory of linear operators.

Beyond encompassing the scenarios in the literature for which constant-factor approxima-
tion algorithms were found, our generic framework implies that that for convex sets with
bounded type-2 constant, constant factor approximability is preserved under the following ba-
sic operations: (a) Subspaces, (b) Quotients, (c) Minkowski Sums, (d) Complex Interpolation.
This yields a rich family of new examples where constant factor approximations are possible,
which were beyond the reach of previous methods. We also show (under commonly used com-
plexity assumptions) that for symmetric norms and unitarily invariant matrix norms the type-2
constant nearly characterizes the approximability of quadratic maximization.
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1 Introduction

Suppose that n ∈N and that K ⊆ Rn is a convex body (i.e., K is convex, closed, bounded and has
nonempty interior) that is origin-symmetric (i.e., x ∈ K if and only if −x ∈ K). We will assume
throughout that K is given by a membership oracle, so that the efficiency of the ensuing algorithms
is measured in terms of the dependence on n and the number of oracle calls.

In this article, we will investigate the approximability of the following optimization problem,
special cases of which have been extensively studied in the literature (we will discuss that back-
ground after first presenting the problem and our main algorithm). The input is an n× n matrix
with real entries A = (Aij) ∈ Mn(R), and the task is to evaluate the quantity

Qmax
K (A)

def
= max

x∈K

n

∑
i=1

n

∑
j=1

Aijxixj = max
x∈K
〈x , Ax〉 . (1)

In (1) and throughout this text, 〈· , ·〉 : Rn ×Rn → R is the standard scalar product on Rn, namely
〈x , y〉 = ∑n

i=1 xiyi for every two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. Also, we will
adhere throughout to the common convention that even though within any in-line discussion the
elements of Rn are written as row vectors, for the purpose of any linear-algebraic consideration
we consider them as column vectors, i.e., members of the n× 1 matrix space Mn×1(R).

The literature also considers a bilinear variant of (1) in which one is given m, n ∈ N, two
convex origin-symmetric bodies K ⊆ Rn and L ⊆ Rm, and an n×m matrix B = (Bij) ∈ Mn×m(R),
and the task is to evaluate (or estimate) the quantity

Opmax
K,L(B) def

= max
x∈K
y∈L

n

∑
i=1

m

∑
j=1

Bijxiyj = max
x∈K
y∈L

〈x , By〉 = 1
2

max
z∈K×L

〈
z ,
(

0 B
B∗ 0

)
z
〉

, (2)

where B∗ = (Bji) ∈ Mm×n(R) is the transpose of B. The final equality in (2) shows that (2) is a
special case of (1), which is why we will mostly focus on (1). But, it is beneficial to consider the bi-
linear variant separately because sometimes it exhibits better approximation properties than what
is possible in the quadratic setting (a notable example is Grothendieck’s inequality; see below).

Another important special case of (1) which the literature sometimes treats separately is when
the input matrix A is symmetric and positive semidefinite (PSD). In that case

Qmax
K (A) = max

x∈K
‖A

1
2 x‖2

`n
2
= max

x∈K
y∈Ball(`n

2 )

〈
A

1
2 x, y

〉2
=
(

Opmax
K,Ball(`n

2 )

(
A

1
2
))2

,

where ‖ · ‖`n
2

is the standard Euclidean norm on Rn and Ball(`n
2) = {x ∈ Rn : x2

1 + . . . + x2
n 6 1}

is the corresponding Euclidean ball of radius 1. Thus, the PSD case of (1) is a special case of the
aforementioned bilinear variant of (1), which explains why it has better properties (another reason
is that in this case L is a Euclidean ball rather than a more general convex body).

The above framework is a rich and expressive family of optimization problems which contains
many discrete and continuous optimization problems as special cases (corresponding to choices
of matrices and convex bodies) that occur in several areas, including combinatorial optimization,
computational complexity, graph theory, quantum information theory, statistical physics, machine
learning, game theory and functional analysis. In fact, we suspect that many readers have already
spotted familiar questions as such special cases, but in order to first discuss the contribution of the
present work, we will defer specifying a variety of such examples to Section 1.4.
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While the literature contains investigations of such special cases using case-specific reasoning,
here we develop a general methodology for treatment of the approximability and inapproximabil-
ity aspects of these questions. We devise an overarching method for obtaining constant factor ap-
proximation algorithms that includes the prior cases in the literature for which this was achieved,
as well as many more new cases.

The precursor (and inspiration) of the present article is the manuscript [NS09] that has not yet
been published but was circulated widely over the years and will be published soon (it is available
on request). The goal of [NS09] was to broach the same issue of finding an algorithmic approach to
the optimization problem (1) which treats a class of convex bodies K that is more general than the
special cases that have been previously studied, as an extension of the study of the ball of `n

p that
was conducted in [KNS08] (see [GRSW16] for the corresponding hardness result under a weaker
hypothesis than that of [KNS08]). The success of [NS09] was partial, as it pertains only to a certain
subclass of convex bodies K that satisfies the following symmetry condition.

∀(x1, . . . , xn) ∈ Rn, (x1, . . . , xn) ∈ K ⇔ (|x1|, . . . , |xn|) ∈ K. (3)

When (3) holds, there is an obvious vector relaxation of (1) that is given by the maximization

max
x1,...,xn∈Rn

(‖x1‖`n
2

,...,‖xn‖`n
2
)∈K

n

∑
i=1

n

∑
j=1

Aij
〈

xi , xj
〉

. (4)

The utility of such a relaxation was investigated in [Nes98, KNS08, NS09], where further geometric
assumptions on K were isolated that guarantee that (4) is a convex program that has bounded
integrality gap (see below). Note that (3) probes only the intersection K ∩ [0, ∞)n of K with the
positive orthant, which is why it is natural to study it only when (4) holds; otherwise K need not
be determined by the region of space to which the relaxation (4) is sensitive.

This was the starting point of our work. Namely, for convex bodies that do not satisfy the
symmetry assumption (3), there is no longer an obvious vector relaxation. Note that (3) is a strin-
gent assumption that fails for many norms of interest; e.g. for unit balls of matrix norms such as
the Schatten–von Neumann trace classes (see below) where the norm of the entry-wise absolute
value (|Aij|) of a given matrix A = (Aij) ∈ Mn(R) can be drastically different from the norm of
A. To overcome this conceptual obstacle, we devise an entirely different algorithmic methodology.
Before proceeding, it will be convenient to set some notation and record some basic definitions.

1.1 Notation and Preliminaries

It is most natural to present our approach in the (equivalent) setting of normed spaces rather than
origin-symmetric convex bodies. Specifically, let ‖ · ‖X : Rn → [0, ∞) be a norm on Rn and denote
the corresponding normed space (Rn, ‖ · ‖X) by X. The (closed) unit ball of X will be denoted
throughout what follows by

Ball(X)
def
= {x ∈ Rn : ‖x‖X 6 1}.

The standard correspondence is that Ball(X) is an origin-symmetric convex body, and conversely
any K ⊆ Rn as above is equal to Ball(X) for some X = (Rn, ‖ · ‖X), where the norm ‖x‖X of each
x ∈ Rn r {0} is the unique scaling factor s > 0 for which 1

s x belongs to the boundary of K.
In accordance with the above convention for convex bodies, we will tacitly assume throughout

the ensuing discussion that all normed spaces X = (Rn, ‖ · ‖X) are given by a membership oracle

2



for Ball(X). By binary search for the smallest r > 0 such that x ∈ Rn belongs to rBall(X), such an
oracle directly yields also a norm-evaluation oracle.

So, given a normed space X = (Rn, ‖ · ‖X) and a matrix A ∈ Mn(R), denote

Qmax
X (A)

def
= Qmax

Ball(X)(A).

Observe in passing that the bilinear variant (2) when K = Ball(X) and L = Ball(Y) for normed
spaces X = (Rn, ‖ · ‖X) and Y = (Rm, ‖ · ‖Y), respectively, is nothing more that the operator norm
of the matrix B ∈ Mn×m(R) when it is viewed as an operator from Y to the dual X∗ of X. Namely,

Opmax
K,L(B) = ‖B‖Y→X∗ = ‖B∗‖X→Y∗ , (5)

where the first equality in (5) can be taken to be the definition of the corresponding operator norm
and it is equal to the more common definition ‖B‖Y→X∗ = maxy∈Ball(Y) ‖By‖X∗ by duality (Hahn–
Banach). The second equality in (5) is the fact that the norm of an operator between Banach spaces
is equal to the norm of its adjoint. See e.g. the textbook [Rud73] for this standard material.

Type and Cotype. It is beneficial to introduce the following convention regarding random vari-
ables that will be used extensively in what follows. We will work throughout with the families
of random variables {ε i : i ∈ N}, {gi : i ∈ N} and {gij : i, j ∈ N}, where it will always be
tacitly understood that they are independent, {ε i : i ∈N} are±1 Bernoulli random variables, i.e.,
distributed uniformly over {−1, 1}, and {gi : i ∈ N} and {gij : i, j ∈ N} are standard Gaussian
random variables. All the expectations that appear below are with respect to the joint distribution
of these random variables. We will always denote the standard Gaussian random vector in Rn by
g = (g1, . . . , gn).

The (Rademacher) type 2 constant [DPR72] of a normed space X = (Rn, ‖ · ‖X), denoted
T2(X), is the smallest T > 0 such that for every m ∈N, every x1, . . . , xm ∈ Rn satisfy

E
[∥∥

m

∑
i=1

ε ixi
∥∥2

X

]
6 T2

m

∑
i=1
‖xi‖2

X, (6)

Correspondingly, the (Rademacher) cotype 2 constant of X, denoted C2(X), is the smallest C > 0
such that for every m ∈N, every choice of vectors x1, . . . , xm ∈ Rn satisfies

m

∑
i=1
‖xi‖2

X 6 C2E
[∥∥

m

∑
i=1

ε ixi
∥∥2

X

]
. (7)

These invariants of normed spaces are of immense importance to various areas; see the sur-
vey [Mau03] for an indication of (part of) this body of work, as well as its history. Here we show
that they are closely related to the computational complexity of the quadratic optimization prob-
lem (1), and, in fact, under common complexity assumptions, they govern it in a sense that will
be made precise later. For concreteness, we record the following asymptotic evaluations1 of these
constants when X = `n

p for some integer n > 2 and p ∈ [1, ∞], all of which can be found in [MS86].

T2(`
n
p) �

{
n

1
p− 1

2 if 1 6 p 6 2,√
min{p, log n} if 2 6 p 6 ∞,

and C2(`
n
p) �

{
1 if 1 6 p 6 2,

n
1
2− 1

p if 2 6 p 6 ∞.
(8)

1In addition to the usual o(·), O(·), Ω(·), Θ(·) notation for asymptotic relations, we will also use throughout the
following (standard) asymptotic notation. For P, Q > 0, the notations P . Q and Q & P mean that P 6 KQ for a
universal constant K > 0. The notation P � Q stands for (P . Q) ∧ (Q . P).
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We also record the following duality relations that hold for any normed space X.

C2(X∗) 6 T2(X) . C2(X∗) log(dim(X) + 1). (9)

The first inequality in (9) is straightforward [MP76] and the second inequality in (9) is from [Pis80].

1.2 A Generic Framework

We are now ready to describe our algorithmic approach, starting with a simpler “warm-up” al-
gorithm which covers many new instances of (1). Fix an integer n > 2. The set of symmetric
positive definite matrices with real entries will be denoted by PSDn ⊆ Mn(R). For W ∈ Mn(R)
we will use the notation W < 0 to indicate that W ∈ PSDn. We associate to a normed space
X = (Rn, ‖ · ‖X) the following subset U (X) of PSDn that we call the upper covariance body of X.

U (X)
def
=

∞⋃

m=1

{ m

∑
i=1

wiw∗i : w1, . . . , wm ∈ Rn and E
[∥∥

m

∑
i=1

giwi
∥∥2

X

]
6 1

}
. (10)

For every w1, . . . , wm ∈ Rn, the random vectors ∑m
i=1 giwi and W

1
2 g, where W = ∑m

i=1 wiw∗i < 0,
are equi-distributed, since they are both Gaussian vectors whose covariance matrix is W. Thus,

U (X) =
{

W ∈ PSDn : E
[∥∥W

1
2 g
∥∥2

X

]
6 1

}
. (11)

This observation explains our choice of nomenclature, namely U (X) consists of those covariance
matrices of Gaussian vectors in Rn whose expected squared X-norm is bounded from above by
1. An important property of U (X) is that one can relate quadratic optimization over Ball(X) to
linear optimization over U (X):

From Quadratic Optimization to Linear Optimization. Observe that for any A = (Aij) ∈
Mn(R), any normed space X = (Rn, ‖ · ‖X) satisfies

Qmax
X (A) = max

W=(Wij)∈U (X)

n

∑
i=1

n

∑
j=1

AijWij = max
W∈U (X)

〈A , W〉 . (12)

Indeed, if W ∈ PSDn satisfies E
[∥∥W

1
2 g
∥∥2

X

]
6 1, then

〈A , W〉 = Tr(AW) = Tr
(
W

1
2 AW

1
2
)
= E

[〈
W

1
2 g, AW

1
2 g
〉]

6 E
[
Qmax

X (A)
∥∥W

1
2 g
∥∥2

X

]
6 Qmax

X (A).

This shows that right hand side of (12) is at most the left hand side of (12). The reverse inequality
follows by noting that if w ∈ Ball(X), then ww∗ ∈ U (X) and 〈A , ww∗〉 = 〈w , Aw〉.

Approximate Convexity of U (X). The body U (X) need not be convex, but it is T2(X)2-
approximately convex in the sense that

U (X) ⊆ conv
(
U (X)

)
⊆ T2(X)2 · U (X), (13)

where, given a subset S of some Rd, we denote the convex hull of S by conv(S). To justify (13), fix
k ∈N and suppose that W1, . . . Wk ∈ U (X) and s1, . . . , sk ∈ [0, 1] satisfy ∑k

j=1 sj = 1. The goal is to

4



demonstrate that T2(X)−2 ∑k
j=1 sjWj ∈ U (X). For each j ∈ {1, . . . , k}, the assumption Wj ∈ U (X)

means that for some m(j) ∈N there are vectors w1,j, . . . , wm(j),j ∈ Rn such that

Wj =
m(j)

∑
i=1

wijw∗ij and E
[∥∥

m(j)

∑
i=1

gijwij
∥∥2

X

]
6 1.

Hence,

E
[∥∥

k

∑
j=1

m(j)

∑
i=1

gij
√

sjwij
∥∥2

X

]
= E

[∥∥
k

∑
j=1

ε j
√

sj

m(j)

∑
i=1

gijwij
∥∥2

X

]

6 T2(X)2
k

∑
j=1

sjE
[∥∥

m(j)

∑
i=1

gijwij
∥∥2

X

]
6 T2(X)2.

Therefore T2(X)−2 ∑k
j=1 ∑

m(j)
i=1

(√sjwij
)(√sjwij

)∗
= T2(X)−2 ∑k

j=1 sjWj indeed belongs to U (X).
Motivated by (13), we set the following terminology.

Definition 1.1. Suppose that S ⊆ Rn is star-shaped with respect to the origin, i.e., tx ∈ S for every x ∈ S
and t ∈ [0, 1]. Given α ∈ [1, ∞), we say that S is α-approximately convex if conv(S) ⊆ αS.

The two observations (12) and (13) highlight the following important facts. Firstly, the relax-
ation of Ball(X) ⊆ Rn to the upper covariance body U (X) ⊆ Mn(R) is lossless, i.e., it reduces the
maximization over Ball(X) of a quadratic form to a maximization over U (X) of a linear function.
Secondly, the geometry of X, through the extent to which it has type 2, plays a role by ensuring
that the potentially complicated set U (X) is at the very least approximately convex. It is thus nat-
ural to investigate the efficient optimization of linear functions over approximately convex sets.
However, the following theorem (from Section 9) shows that this is a subtle matter, because even
when the type-2 constant of X is small, the computational complexity of approximating Qmax

X (A)
could be poor.

Theorem 1.2 (Impossibility of quadratic maximization assuming only bounded type-2). For every
n ∈ N and 0 < ε < 1 there exists a distribution P = Pn,ε over random normed spaces X = (Rn, ‖ · ‖X)
and pn ∈ (0, 1) with limn→∞ pn = 1, such that the following properties hold.

1. Pn,ε[T2(X) . 1] = 1.

2. Pn,ε
[
S ∩ Ball(X) = S ∩ Ball(`n

2)
]
> pn for every S ⊆ Rn with |S| 6 exp(nε).

3. Pn,ε
[
Qmax

X (In) & n1−ε
]
> pn, where In ∈ Mn(R) is the identity matrix.

Theorem 1.2 demonstrates that if there were an algorithm that takes as input a normed space
X whose type-2 constant is O(1) and outputs a number that is guaranteed to be within a factor that
is o(n1−ε) of Qmax

X (In), then that algorithm must necessarily make more than exp(nε) membership
queries to Ball(X). Indeed, Qmax

X (In) = 1 when X = `n
2 , while if X is the random normed space of

Theorem 1.2, then T2(X) . 1 and with high probability Qmax
X (In) & n1−ε. However, if S is the set

of points that the algorithm queried, then with high probability the algorithm did not obtain any
information that distinguishes X from `n

2 .
Thus, even if X has a small type-2 constant, this does not suffice for the existence of an efficient

algorithm for approximating Qmax
X (·), but, as we have seen, requiring this property is a good place
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to start because it ensures that the upper covariance body is approximately convex. The follow-
ing theorem establishes a further connection between type 2 and the computational complexity
of approximating Qmax

X (·) by providing evidence (under a commonly used complexity assump-
tion, namely the Small Set Expansion Hypothesis) that if the type 2 constant of X is very large,
then there is no polynomial time algorithm that obtains a O(1)-approximation to Qmax

X (·). Fur-
ther hardness results (with and without non-uniform complexity assumptions and with weaker
assumptions on the growth of the type-2 constant assuming (necessarily) the Exponential Time
Hypothesis), are derived in Section 8.

Theorem 1.3 (Impossibility of quadratic maximization whenever type-2 is growing polynomially).

Fix a sequence of normed spaces {Xn = (Rn, ‖ · ‖Xn)}∞
n=1 satisfying T2(Xn) = nΩ(1). We assume that

they are given to us algorithmically in the sense that there is a polynomial time algorithm that takes as input
x ∈ Rn and determines whether or not x ∈ Ball(Xn). Then, assuming the Small Set Expansion Hypothesis
and that NP 6⊆ P/poly, there is no polynomial time algorithm that takes as input a matrix A ∈ Mn(R) and
approximates Qmax

Xn (A) up to a universal constant factor.

Remark 1.4. The Small Set Expansion Hypothesis (SSEH) is a commonly used hardness assumption that
was formulated in [RS10] and is recalled in Section 8. Of course, the SSEH is less standard than, say,
NP 6⊆ P/poly, so one should take Theorem 1.3 as evidence that if the underlying norm has large type-2
constant, then it is unlikely that there is an efficient constant-factor algorithm for (1), namely by designing
such an algorithm one would refute the SSEH, thus making a major breakthrough in complexity theory.

Remark 1.5. Recalling (8), Theorem 1.3 applies in particular to Xn = `n
p when 1 6 p < 2, thus demon-

strating the computational difficulty of the `p Grothendieck problem, which was left open in [KNS08],
where it was shown that this problem does have a Op(1) approximation algorithm when 2 6 p < ∞. In
the unpublished manuscript [Alo06] it was proved that a O(1) approximation algorithm exists when p = 1
provided that all of the diagonal entries of the input matrix A vanish; see the exposition in [KN12]. In
Section 8 we show that if Xn = `n

p and 1 < p < 2, then the hardness statement of Theorem 1.3 holds even
when the diagonal of A vanishes, so in this setting we obtain rigorous evidence for an interesting complexity
theoretic terrain: The `p Grothendieck problem is approximable when p = 1 or 2 6 p < ∞, but likely hard
to approximate when 1 < p < 2 or p = ∞ (see [ABH+05] for hardness when p = ∞).

Approximation Algorithms From Upper Covariance Separation Oracle. Recall that The-
orem 1.2 implies that even though the (random) upper covariance body U (X) is O(1)-
approximately convex (as X has bounded type 2 constant), with high probability one cannot op-
timize linear functionals over U (X) efficiently. It turns out that the issue at hand is that even if
one permits the algorithm to make oracle norm-evaluation queries for X, the auxiliary body U (X)
need not even have an efficient “approximate separation oracle,” which we define as follows.

Definition 1.6. Fix α > 1. Let S ⊆ Rn be star shaped with respect to the origin and α-approximately
convex. An α-approximate separation oracle for S is a function O defined on Rn that outputs to each input
x ∈ Rn either “Inside” or an affine hyperplane of Rn. The requirements for O are as follows.

- If the output O(x) is “Inside,” then necessarily x ∈ αS.

- If the output O(x) is a hyperplane H ⊆ Rn, then H must separate x from S, i.e., x and S are
contained in different sides of H. Note that this implies in particular that x /∈ conv(S).
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Observe that these requirements are not dichotomic, i.e., they are ambiguous when x ∈ (αS)r conv(S)
(recall that conv(S) ⊆ αS since S is α-approximately convex). Namely, if x ∈ (αS)r conv(S), then the
oracle is allowed to either output a hyperplane or output “Inside.”

Using a natural approximate version of the ellipsoid method, we prove the following theorem
(see Section 3).

Theorem 1.7 (Approximate Ellipsoid Method).
Fix α > 1 and R > r > 0. Suppose that S ⊆ PSDn is star shaped with respect to the origin, α-
approximately convex, and has an α-approximate separation oracle. Suppose also that

r · Ball(`n2

2 ) ⊆ S ⊆ R · Ball(`n2

2 ) ,

where we use the natural identification of Mn(R) with Rn2
. Then, there exists an algorithm that takes as

input a matrix A ∈ Mn(R), makes a number of oracle calls that grows polynomially in n, log R, log(1/r)
and the length of the bit description of A, and outputs a matrix W ∈ S that satisfies

〈W, A〉 > 1− o(1)
α

sup
V∈S
〈V, A〉.

For the sake of the discussion within the introduction, it will be convenient to always assume
tacitly that X = (Rn, ‖ · ‖X) is a normed space whose upper covariance body satisfies

e−nO(1) · Ball(`n2

2 ) ⊆ U (X) ⊆ enO(1) · Ball(`n2

2 ) . (14)

Such a normalization, which is mechanical to verify in all the cases that we examined, removes
the need to state running times in terms of r, R as done in Theorem 1.7. Another simplifying
assumption that we will make throughout this introduction is that the length of the bit description
of all inputs (namely matrices) to algorithms is nO(1).

Using Theorem 1.7 and applying it to U (X), we readily deduce the following approximation
algorithm for quadratic maximization (see Section 4.1.1)

Proposition 1.8 (Quadratic Maximization Given Separation Oracle for Upper Covariance Body).
Given access to an α-approximate separation oracle for U (X), there is an algorithm that on any input
A ∈ Mn(R) runs in polynomial time and returns a (1 + o(1))α-approximation to Qmax

X (A).

The upshot of the above result is that it refocuses our attention to the task of designing an ap-
proximate separation oracle for the upper covariance body. Using this approach, we are already
able to conclude new results for quadratic maximization by applying tools from classical analysis
to design an approximate separation oracle for U (X). In some cases, however, it is quite difficult
to design such an oracle directly for U (X). Inspired by deep tools from functional analysis, specif-
ically the factorization theory of linear operators (see the monograph [Pis86]), we will prove that
under the assumption of having a bounded type-2 constant it suffices to design a separation oracle
for the lower covariance region of X which we define in (15) below.

To give a couple of examples, it is easy to design a lower covariance separation oracle for
the Minkowski sum `n

4 + `n
5 (see Section 1.3) or for the quotient norm `n

4 /`m
5 , while on the other

hand it is unclear how to directly describe an upper covariance separation oracle in these cases
(see Section 6 for more details). Another advantage which will become apparent in soon is that
lower covariance separation oracles allow for provably better approximation factors than the up-
per covariance separation oracles in the special cases of PSD quadratic maximization and bilinear
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maximization (the difference can be as big as log n, as can be seen in the familiar example of
X = `n

∞). Below we give a proof sketch for main “framework” theorem, namely an approxima-
tion algorithm for quadratic maximization (resp. bilinear maximization) when type-2 (resp. dual
cotype-2) is bounded assuming access to only a separation oracle for the lower covariance region.

Remark 1.9. In the interest of simplicity, the proof sketch below assumes we only desire to approximate the
optimal value (and not produce solution vectors). For this simpler goal it suffices to use certain factorization
theorems (see Section 5 for a detailed introduction to factorization and the relevant theorems we use) as a
black box. For the full proof in Section 4, we give rounding algorithms as well. For technical reasons, it was
necessary to open the factorization black box and make some parts of the argument constructive, in addition
to dualizing the entire argument. We thus caution the reader that the full proof in Section 4 is syntactically
different from the ensuing overview. In Section 5 we discuss how the results in Section 4 may be viewed as
"dual transpositions" of algorithmic factorization theorems.

Lower Covariance Region. We define the lower covariance region as follows:

L(X)
def
=

∞⋃

m=1

{ m

∑
i=1

wiw∗i : w1, . . . , wm ∈ Rn and E
[∥∥

m

∑
i=1

giwi
∥∥2

X∗

]
> 1

}

=
{

W ∈ PSDn : E
[∥∥W

1
2 g
∥∥2

X∗

]
> 1

}
,

(15)

where the second inequality in (15) is justified the same way as (11). Note that because L(X)

is equal to PSDn r {W ∈ PSDn : E[‖W 1
2 g‖2

X∗ ] < 1}, the lower covariance region of X is the
complement in PSDn of the interior of the upper covariance body of X∗. As such, it is a comple-
ment of a set that is star shaped with respect to the origin, and therefore sL(X) ⊇ L(X) for every
0 < s 6 1.

Approximate Convexity of Lower Covariance Region. By reasoning analogously to the proof
of (13), we see that

L(X) ⊆ conv
(
L(X)

)
⊆ 1

C2(X∗)
L(X). (16)

Thus, the lower covariance region of X is C2(X∗)2-approximately convex in the following sense,
which is the natural adaptation of Definition 1.1 to regions that are complements of star shape
sets. Recall that by (9) if X has bounded type 2 constant, then X∗ has bounded cotype 2 constant.

Definition 1.10. Let T ⊆ Rn satisfy [1, ∞)T ⊆ T (equivalently, Rn r T is star shaped with respect to the
origin). Given α > 1, we say that T is α-approximately convex if conv(T) ⊆ 1

α T.

With this definition at hand, the natural adaptation of Definition 1.6 is as follows.

Definition 1.11. Fix α > 1. Suppose that T ⊆ Rn satisfies [1, ∞)T ⊆ T and that T is α-approximately
convex. An α-approximate separation oracle for T is a function O defined on Rn that outputs to each input
x ∈ Rn either “Inside” or an affine hyperplane of Rn. The requirements for O are as follows.

- If the output O(x) is “Inside,” then necessarily x ∈ 1
α T.

- If the output O(x) is a hyperplane H ⊆ Rn, then H must separate x from T.

If x ∈ ( 1
α T)r conv(T), then O is allowed to either output a hyperplane or output “Inside”.
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Approximation Algorithms from Lower Covariance Separation Oracle. With these notions
at hand, if the lower covariance region of X has an α-approximate separation oracle for some
α > C2(X∗), then by analysing a natural approximate version of the ellipsoid method we ob-
tain an (oracle-time) efficient algorithm for approximating certain convex programs up to factor
(1 + o(1))α, in the spirit of Theorem 1.7. For the sake of simplicity, rather than explaining this
methodology in the introduction in its full generality, we state the following two consequences of
it and refer to Section 4 for a complete treatment.

Theorem 1.12 (Quadratic/bilinear maximization given separation oracle for lower covariance re-
gion).
Suppose that X = (Rn, ‖ · ‖X) is a normed space such that L(X) has an α-approximate separation oracle
for some α > C2(X∗). Then, there is an algorithm that given an input matrix A ∈ Mn(R) makes poly-
nomially many oracle calls and runs in time nO(1), and outputs a matrix W ∈ PSDn with W < A that
satisfies

inf
{

Qmax
X (M) : M ∈ PSDn and M < A

}
&

Qmax
X (W)

α
. (17)

Also, if X = (Rn, ‖ · ‖X), Y = (Rm, ‖ · ‖Y) are normed spaces such that L(X),L(Y) have α-approximate
separation oracles for α > max{C2(X∗), C2(Y∗)}, then there is an algorithm that given an input matrix
B ∈ Mn×m(R) makes polynomially many oracle calls and runs in time that is polynomial in n, m, and
outputs a matrices W ∈ PSDn, V ∈ PSDm with

(
W 0
0 V

)
<
(

0 B
B∗ 0

)
and

inf
{

Qmax
X (M1) + Qmax

Y (M2) : (M1, M2) ∈ PSDn ×PSDm and
(

M1 0
0 M2

)
<
(

0 B
B∗ 0

)}

&
Qmax

X (W) + Qmax
Y (V)

α
.

(18)

We will next explain the ingredients that go into (17); the justification of (18) is similar and will
be carried out separately in Section 4. The reason why we include (18) here is that it is important
for the bilinear variant (2), namely for the question of approximating the operator norm ‖A‖Y→X∗ .

The goal of (17) is to O(α)-approximately minimize the convex function M 7→ Qmax
X (M) over

the convex set {M ∈ PSDn : M < A}. In Section 4 we will show that in order to efficiently find
a (1 + o(1))α-approximate minimizer, it suffices to show that each of the corresponding sub-level
sets {{M ∈ PSDn : Qmax

X (M) 6 t} : t ∈ R} has a (1 + o(1))α-approximate separation oracle. By
homogeneity, we therefore need to show that under the assumptions of Theorem 1.12, the convex
set {M ∈ PSDn : Qmax

X (M) 6 1} has a (1 + o(1))α-approximate separation oracle.
To this end, fix M ∈ PSDn and consider the following optimization problem.

max
{

E
[
‖M 1

2 V
1
2 g‖2

X∗
]

: V ∈ PSDn and Tr(V) 6 1
}

. (19)

We claim that one can find in polynomial time and with polynomially many oracle calls a matrix
V ∈ PSDn the attains this maximum up to a factor of (1 + o(1))α. Indeed, in Section 4 we will
show that for this it suffices to check that each of the corresponding super-level sets

{
{V ∈ PSDn : E

[
‖M 1

2 V
1
2 g‖2

X∗
]
> t} : t ∈ R

}
(20)

has an α-approximate separation oracle. Since each of the sets appearing in (20) is (by definition) a
linear transformation of the lower covariance body of X, the assumption of Theorem 1.12 ensures
that the desired oracle exists. Therefore, we can find V ∈ PSDn with Tr(V) 6 1 at which the
maximum in (19) is attained up to a factor of (1 + o(1))α.
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Finally, we can describe what the desired oracle for {M′ ∈ PSDn : Qmax
X (M′) 6 1}will output

for the input matrix M. For each realization of the Gaussian vector g ∈ Rn, let xg ∈ Ball(X) be the
random vector that is given by

xg
def
= argmax

x′∈Ball(X)

〈
x′, M

1
2 V

1
2 g
〉
.

Note that xg can be found efficiently using polynomially many membership queries to Ball(X),
using the classical theory of convex programming [GLS93]. If

‖M 1
2 V

1
2 g‖X∗

‖V 1
2 g‖`n

2

6 1,

then the oracle outputs “Inside.” Otherwise, the oracle outputs the hyperplane

{M′ ∈ Mn(R) : 〈M′xg, xg〉 = 1}.

By tracking the above definitions, one checks that this oracle satisfies the desired properties with
positive probability. One gets this to hold with sufficiently high probability (to account for the
polynomially many oracle calls) by repeating the above procedure with nO(1) independent sam-
ples from g rather than only one such sample; the details appear in Section 4.

With the algorithmic groundwork of Theorem 1.12 complete, our final algorithm relies on the
analytic inequalities that are contained in the following theorem (see Section 5 for proofs).

Theorem 1.13 (Factorization Inequalities).
For every normed space X = (Rn, ‖ · ‖X) and A ∈ Mn(R) we have

Qmax
X (A) 6 inf

{
Qmax

X (W) : W ∈ PSDn and W < A
}
6 T2(X)2 ·Qmax

X (A) . (21)

Also, for every two normed spaces X = (Rn, ‖ · ‖X), Y = (Rm, ‖ · ‖Y), and every B ∈ Mn×m(R), denote

γY→X∗
2 (B)

def
= inf

{
Qmax

X (W) + Qmax
Y (V)

2
: (W, V) ∈ PSDn ×PSDm and

(
W 0
0 V

)
<
(

0 B
B∗ 0

)}
.

(22)

Then,
‖B‖Y→X∗ 6 γY→X∗

2 (B) . C2(X∗)C2(Y∗) log
(
C2(X∗)C2(Y∗)

)
· ‖B‖Y→X∗ . (23)

We chose the notation γY→X∗
2 (B) in (22) purposefully to coincide with the classical functional

analytic notation for factorization norms [Pis86], namely it is the γ2 norm of B when it is viewed
as an operator from Y to X∗. The equality (22) is therefore a variational characterization of the
classical quantity in the left hand side in terms of the infimum on the right hand side; we prove
this identity in Section 5.2.1. With this identity at hand, the inequality (23) is an application of a
deep factorization theorem of Pisier [Pis80]. The inequality (21) is inspired by the aforementioned
factorization theory, but it seems to be new; it could be viewed as a factorization theorem for
quadratic forms (see Section 5.3) and it would be interesting to study its ramifications within
functional analysis.

By combining Theorem 1.12 with Theorem 1.13, we get the following algorithmic result.
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Theorem 1.14 (Generic Framework).
Suppose that X = (Rn, ‖ · ‖X) is a normed space such thatL(X) has an α-approximate separation oracle for
some α > C2(X∗). Then, there is an algorithm that given an input matrix A ∈ Mn(R) makes polynomially
many oracle calls and runs in time that is polynomial in n, and outputs a number Alg1 that is guaranteed
to satisfy

Qmax
X (A) 6 Alg1 . α T2(X)2 ·Qmax

X (A).

For the bilinear case,if X = (Rn, ‖ · ‖X), Y = (Rm, ‖ · ‖Y) are normed spaces such that L(X),L(Y)
have α-approximate separation oracles for some α > max{C2(X∗), C2(Y∗)}, then there is an algorithm
that given an input matrix B ∈ Mn×m(R) makes polynomially many oracle calls and runs in time that is
polynomial in n, m, and outputs a number Alg2 that is guaranteed to satisfy

‖B‖Y→X∗ 6 Alg2 . α C2(X∗)C2(Y∗) log
(
C2(X∗)C2(Y∗)

)
· ‖B‖Y→X∗ .

Remark 1.15. One often wishes not only to approximate efficiently the values of the quantities Qmax
X (A)

and ‖B‖Y→X∗ , but also to find efficiently the vector x ∈ Rn at which Qmax
X (A) is approximately attained,

and correspondingly the vectors x ∈ Rn and y ∈ Rm at which ‖B‖Y→X∗ is approximately attained. For
the latter, we need a constructive version of Pisier’s factorization theorem that entails several adjustments of
its classical proof; the details appear in Section 4.2.2. For this variant (namely, finding almost maximizing
vectors rather than only estimating the quantity ‖B‖Y→X∗), we get the slightly worse approximation factor
O(αC2(X∗)C2(Y∗) log(αC2(X∗)C2(Y∗))) in the second part of Theorem 1.14.

1.3 Examples of Applications

Theorem 1.14 focuses our attention to designing approximate separation oracles for lower covari-
ance bodies. In the specific cases that we examined, it turns out that this task is tractable because it
reduces to probabilistic (Khintchine-type) inequalities that are available in the literature. We will
examine such applications next. The advantage of the above approach is that it shifts our focus
to a new algorithmic task. This task most likely cannot always be achieved due to the aforemen-
tioned hardness results, but in specific cases it becomes a concrete new question that lends itself
to classical tools that may have not seemed relevant in the initial formulation of the problem. This
reframing also allows us to prove various closure properties for the class of convex bodies for
which efficient quadratic or bilinear maximization is possible.

1.3.1 Closure Properties

Given normed spaces X = (Rn, ‖ · ‖X) and Y = (Rn, ‖ · ‖Y), one can obtain various other normed
spaces. The most basic examples are passing to a subspace or a quotient of X. One can also
consider the normed spaces X + Y = (Rn, ‖ · ‖X+Y) and X ∩ Y = (Rn, ‖ · ‖X∩Y) whose unit balls
are Ball(X) + Ball(Y) = {x + y : (x, y) ∈ Ball(X)× Ball(Y)} and Ball(X) ∩ Ball(Y), respectively;
we call the former the Minkowski sum of X and Y and we call the latter the intersection of X and
Y. A further operation of great importance is the 1-parameter family of complex2 interpolation
spaces {[X, Y]θ}θ∈[0,1] whose definition is recalled in Section 6.4 (see the monograph [BL76] for a
thorough account). There are of course more such operations (a notable example is duality), but
the above list of constructions is singled out because it always results in a normed space whose
type 2 constant does not exceed O(max{T2(X), T2(Y)}), which is crucial for us due to Theorem 1.3.

2The real interpolation method (see [BL76]) furnishes another such 1-parameter family of intermediate norms, but in
the present work we will investigate only the complex interpolation method and we expect that it would be mechanical
to obtain the analogous results for real interpolation using the same ideas.
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In Section 6, we use the above framework to show that the class of normed spaces X with
T2(X) = O(1) for which there exists a polynomial time O(1)-approximation algorithm for
Qmax

X (A) is preserved under subspaces, quotients, Minkowski sums, intersection and complex
interpolation. Among these operations, passing to subspaces is quite straightforward, but the
rest rely on the methodology that is developed here. Beyond the intrinsic interest of such closure
properties, we remark that if one starts with the many examples of spaces that belong to the afore-
mentioned class (see below), then these operations produce a rich variety of new examples that
were beyond the reach of previous methods. Also, observe that these closure properties do not as-
sume any information whatsoever on the initial algorithms: These algorithms are used as a “black
box” to design an approximate separation oracle for the lower covariance body of the resulting
normed space, after which one applies the first part of Theorem 1.14. An analogous treatment of
the bilinear case is carried out in Section 6 using the second part of Theorem 1.14, where closure
under quotients and Minkowski sums is derived under the assumption that cotype 2 constants
of the duals of the initial spaces are O(1); we do not treat the rest of the above-listed operations
because they do not necessarily preserve this bounded cotype 2 assumption on the dual.

1.3.2 Symmetric Norms

A norm ‖ · ‖ on Rn is said to be a symmetric norm if ‖x‖ � ‖(ε1xπ(1), . . . , εnxπ(n))‖ for any x ∈ Rn,
any permutation π of {1, . . . , n}, and any choice of signs ε1, . . . , εn ∈ {−1, 1}.3 This is a well stud-
ied class of norms occurring frequently in the computer science, learning and optimization litera-
ture. Several papers have attempted to characterize the symmetric norms that are appropriate for
various algorithmic tasks; see e.g. [LNRW19, ANN+17, BBC+17, ALS+18, SWZ19, SWY+19].

In Section 7.2, we use Theorem 1.14 to give a constant-factor approximation algorithm for
quadratic (respectively bilinear) maximization over unit balls of symmetric norms whose type-2
constant (respectively the cotype-2 of their dual) is O(1). Combined with Theorem 1.3, we obtain
a near characterization of those symmetric norms for which quadratic maximization admits a
constant factor approximation algorithm.

The class of those symmetric norms that have a bounded (or slowly growing) type-2 constant
contains many examples that are not covered by the available literature. Below we will list some
explicit examples of symmetric norms appearing in the optimization literature for various algo-
rithmic tasks and for which we can conclude either a new quadratic maximization approximation
algorithm or a new inapproximability result.

1. An Orlicz norm `n
ϕ is defined by setting for every x ∈ Rn,

‖x‖`n
ϕ

def
= inf

{
λ > 0 |

n

∑
i=1

ϕ
( |xi|

λ

)
6 1

}
,

where ϕ : [0, ∞) → [0, ∞) is a convex function satisfying ϕ(0) = 0 and ϕ(t) > 0 for all
t > 0. Thus, in the special case ϕ(t) = tp for some p > 1 we have `n

ϕ = `n
p. Among the many

applications of Orlicz norms, we note that they are important for the study of tail behaviour
of random variables and are studied in statistics/machine learning [CW14] as examples of
M-estimators with (convex loss functions).

The class of Orlicz norms with bounded type-2 constant has a complete description [Kat98]
as the set of norms `n

ϕ where ϕ : [0, ∞)→ [0, ∞) satisfies the following two conditions.

3One could replace the exact invariance under permutations and signs by the analogous approximate requirement
‖x‖ � ‖(ε1xπ(1), . . . , εnxπ(n))‖. We will no do so here, though our results work under that assumption as well.
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(a) There are constants K, δ, c > 0 such that for all t > 0, if ϕ(t) 6 δ, then ϕ(2t) 6 Kϕ(t)+ c.
(b) There is ψ : [0, ∞) → [0, ∞) such that t 7→ ψ(

√
t) is convex and ϕ is equivalent to ψ

in the sense that there are constants K1, K2, δ1, δ2, c1, c2 > 0 such that ψ(t) 6 δ1 implies
ϕ(K1t) 6 ψ(t) + c1 and ϕ(t) 6 δ2 implies ψ(K2t) 6 ϕ(t) + c2 for all t > 0.

2. Norms whose unit balls are of the form Ball(`n
p) ∩ (αBall(`n

q )) have a O(1) type-2 constant
(i.e., independent of n, α) whenever 2 6 p, q < ∞. Quadratic maximization over such norms
is considered in order to capture optimization problems with a sparsity restriction. For in-
stance, the densest k-subgraph and k-sparse principal component analysis, which are exten-
sively studied optimization problems, can be cast as quadratic maximization by taking the
underlying norm to be Ball(`n

∞)∩ (kBall(`n
1)) and Ball(`n

2)∩ (
√

kBall(`n
1)), respectively; note

that these norms have polynomially large type-2 constant due to the `1 component, which is
consistent with the widespread belief that densest k-subgraph and k-sparse principal com-
ponent analysis are hard to approximate. The above examples with 2 6 p, q < ∞ can be
viewed as smoothed out versions of these classical algorithmic questions which do admit a
polynomial time constant factor approximation algorithm.

3. Motivated by applications to kernel pattern matching, [NS09] gave an approximation algo-
rithm for the following symmetric norm that has slowly growing type-2 constant.

‖(x1, . . . , xn)‖p,∞
def
= max

i∈{1,...,n}
i

1
p x∗i ,

where p > 2 and x∗i denotes the entry of (|x1|, . . . , |xn|) with the i-th largest magnitude.

4. Order statistics norms are defined as the inner product of a non-increasing vector a with the
sorted vector x∗. This class is well studied in the clustering literature [BSS18, CS19a, CS19b]
and includes e.g. the top-k norm (sum of top k magnitudes of x). The type-2 constant of such
norms is bounded whenever a has bounded support.

1.3.3 Unitarily Invariant Matrix Norms

A norm ‖ · ‖ : Mn(C)→ [0, ∞) on the space Mn(C) of n× n matrices with complex entries is said
to be unitarily invariant if ‖UAV‖ = ‖A‖ for any matrix A ∈ Mn(C) and any two unitary matrices
U, V ∈ UMn(C); this can be defined analogously for matrices with real entries (using orthogonal
matrices), as well as for rectangular matrices, and all of our results hold in these settings. Key
examples include the Schatten–von Neumann trace class Sp for p ∈ [1, ∞], which is defined by

∀A ∈ Mn(C), ‖A‖Sp

def
=
(

Tr
(
(AA∗)

p
2
)) 1

p
=
(

Tr
(
(A∗A)

p
2
)) 1

p
=
( n

∑
j=1

σj(A)p
) 1

p
,

where σ1(A) > . . . > σn(A) > 0 are the singular values of A. Thus, ‖A‖S∞ = ‖A‖`n
2 (C)→`n

2 (C) is the
usual operator norm of A. Another example is the Ky-Fan k-norm ‖ · ‖(k) for each k ∈ {1, . . . , n},
which is the sum of the top k singular values, i.e.,

∀A ∈ Mn(C), ‖A‖(k)
def
=

n

∑
j=n−k+1

σj(A).

More generally, if E = (Rn, ‖ · ‖E) is a symmetric normed space, then the following norm is
unitarily invariant and any unitarily invariant norm is obtained in this way (the fact that this
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defines a norm in not immediate; see e.g. [Bha97] for a proof).

∀A ∈ Mn(C), ‖A‖SE

def
= ‖(σ1(A), . . . , σn(A))‖E.

A (substantial) theorem of [GTJ83] asserts that ‖ · ‖SE has O(1) type 2 or cotype 2 constant if and
only if ‖ · ‖E does.

In Section 7.3 we use Theorem 1.14 to obtain a constant-factor approximation algorithm for
quadratic (respectively bilinear) maximization over unitarily invariant norms with bounded type-
2 constant (respectively whose dual has cotype-2 constant). In particular, this provides a different
rounding algorithm for the non-commutative Grothendieck problem [NRV13] (namely, bilinear
maximization over the operator norm), albeit with a worse universal constant than in [NRV13].
As another concrete example, this gives a constant factor approximation algorithm for bilinear
maximization over Ky-Fan k-norms when k = O(1). Combined with Theorem 1.3, we thus obtain
a near characterization of unitarily invariant matrix norms over which quadratic maximization
admits a constant factor approximation algorithm.

1.3.4 Robust Principle Component Analysis

In [NRV13], efficient bilinear maximization over the operator norm (Schatten-∞) was used to give
a constant factor approximation algorithm for the following subspace approximation problem,
called R1-PCA, which was introduced in [DZHZ06]. Given a set of vectors v1, . . . vm ∈ Rn find a k-
dimensional subspace S ⊆ Rn maximizing the sum of the Euclidean lengths of the orthogonal pro-
jections ΠSv1, . . . , ΠSvm of v1, . . . , vm onto S. Thus, the goal of R1-PCA is to find a k-dimensional
subspace S ⊆ Rn for which the quantity ∑m

i=1 ‖ΠSvi‖`n
2

is (approximately) minimized.
Our framework implies that a more general class of robust PCA variants admits constant fac-

tor approximation algorithms. Given a normed space X = (Rm, ‖·‖X), one can use it to aggregate
the length of the projections, thus leading to the following subspace approximation problem.

OPT def
= max

dim(S)=k
‖(‖ΠSv1‖2, . . . , ‖ΠSvm‖2)‖X .

Let T denote the linear operator taking an m× k matrix U with column vectors u1, . . . , uk ∈ Rn

as input and outputting the vector

(〈u1 , v1〉, . . . 〈uk , v1〉)⊕ · · · ⊕ (〈u1 , vm〉, . . . 〈uk , vm〉),

where ⊕ denotes vector-concatenation. Let ‖·‖X(`k
2)

be a norm defined over the set of sequences

(ai)
m
i=1 ∈ (Rk)m of k-dimensional vectors and given by

‖(ai)
m
i=1‖X(`k

2)
def
= ‖(‖a1‖2, . . . , ‖am‖2)‖X .

Then, one can cast OPT as a bilinear maximization problem in the following way.

OPT = max
U∈On
‖T(U)‖X(`k

2)
= max
‖U‖S∞61

‖T(U)‖X(`k
2)
= ‖T‖S∞→X(`k

2)
,

where On ⊆ Mn(R) is the set of orthogonal matrices. The second equality above follows since the
set of extreme points of Ball(S∞) is precisely On, and the maximum of a convex function over a
convex set occurs at an extreme point.
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Thanks to this bilinear maximization formulation, Theorem 1.14 may be combined with the
lower covariance separation oracles constructed in Section 7 to provide good approximation al-
gorithms for a variety of norms ‖·‖X, like constant approximations for sign-invariant norms with
2-concavity constant 1 or symmetric norms with bounded cotype-2 constant. We illustrate the ver-
satility of our framework by providing a more intricate example; by combining Theorem 1.14 with
the separation oracles constructed in Section 7 and using algorithmic closure properties for com-
plex interpolation (Proposition 6.10), we obtain a (log n)O(1)-factor approximation algorithm for
the following refinement of robust-PCA: Find a k-dimensional subspace S ⊆ Rn (approximately)
maximizing

‖(ΠSvi)
m
i=1‖[X0,X1]θ ,

where [·, ·]θ denotes complex interpolation, α > 0 is a parameter, and

‖(ΠSvi)
m
i=1‖X0

def
=

m

∑
i=1
‖ΠSvi‖2 and ‖(ΠSvi)

m
i=1‖X1

def
= α

m

∑
i=1

m

∑
j=1
‖ΠSvi −ΠSvj‖2 .

As defined above, X1 is a semi-norm but can be made into a norm by adding a sufficiently small
multiple of `n

2 which would cause negligible change to the objective value. By tuning the pa-
rameters α > 0 and θ ∈ [0, 1], the above optimization problem intuitively asks for a subspace
maximizing its correlation with the given vectors {vi}m

i=1, while also requiring that the orthogonal
projections onto S of these vectors are not clustered together much on average.

1.4 Brief Summary of the Literature and Problems Captured by Quardatic Maximiza-
tion

Here we will mention some of what is known about the quadratic and bilinear optimization prob-
lem over convex bodies. Quadratic/bilinear maximization over Ball(`n

2) correspond to the famil-
iar linear-algebraic quantities maximum eigenvalue/maximum singular value. The (non-origin-
symmetric) case of (1) when K is a simplex has been investigated in [HH06, dKLP06], partly in
connection to problems in computational biology. The case when K is a polytope with polynomi-
ally many facets is classical. It is among the most important non-linear optimization problems,
with a wide range of applications in operations research, computational biology and economics.
See [FL92, BR95, Bri02] for more information on the computational complexity of such problems.

Perhaps the first nontrivial and most influential case of bilinear maximization is
Grothendieck’s classical inequality [Gro53] and its more common formulation in [LP68], which
corresponds to the case K = Ball(`n

∞). This leads to a constant factor polynomial time algorithm,
as shown in [AN06] (see [BMMN13] for the best known approximation factor), with a variety of
applications to combinatorial optimization. The quadratic maximization problem over Ball(`∞)
was studied in [CW04] with application to correlation clustering, and the matching integrality-
gap lower bound in this case was obtained in [AMMN06]. Hardness results in these settings
(under various complexity assumptions) were obtained in [AN06, ABH+05, KO09, RS09]. The
survey [KN12] is devoted to the use of Grothendieck-type inequalities in combinatorial optimiza-
tion.

Krivine [Kri73] (see also [Pis12]) observed that Grothendieck’s inequality generalizes (with
the same constant) to the class of norms of the form

|||(x1, . . . , xn)||| def
= ‖(x2

1, . . . , x2
n)‖

1
2
Y,
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where ‖ · ‖Y is a norm on Rn that satisfies the symmetry condition (3). Such norms are clearly in-
variant to flipping signs of the entries and are precisely those norms having a 2-convexity constant
of 1 (see Section 7.1.1 for definitions). Hereafter, we shall refer to them as exactly 2-convex norms.
Note in particular that the above class includes the norm `n

p whenever p > 2. Underlying Krivine’s
observation is a constant factor bound on the integrality gap of the bilinear analogue of the convex
programming relaxation (4) over exactly 2-convex norms; in [Nes98], a different proof of this was
obtained. The problem of quadratic maximization over exactly 2-convex norms was investigated
in [NS09], where a constant factor approximation algorithm was obtained under the additional
(necessary) assumption of bounded q-concavity for some finite q (see Section 7.1.1 for definition);
this was used in [NS09] to obtain a (log log n)O(1)-approximation algorithm for a special case of
the quadratic assignment problem. It can also be shown that the (log n)-approximation algorithm
for vertex expansion of a graph due to [LRV13] is a consequence of the algorithm of [NS09].

Implicit in the non-commutative Khintchine inequality [LPP91] is a constant factor convex
programming algorithm for Quadratic Maximization over Schatten-p when 2 6 p < ∞ (and a
log n-approximation when p = ∞). In the bilinear Schatten-∞ case, Grothendieck [Gro53] conjec-
tured a noncommutative version of his inequality which was proven in [Pis78] (the sharp constant
was obtained in [Haa85]). In [NRV13], algorithmic proofs of the non-commutative Grothendieck
inequality were derived, thereby obtaining efficient constant factor rounding algorithms for bi-
linear maximization over Schatten-∞. This was used in [NRV13] to give approximation algo-
rithms for robust principal component analysis and a generalization of the orthogonal procrustes
problem. In [RV15], it was shown how this can be used to bound the power of entanglement
in quantum XOR games. A corresponding (sharp) hardness result was obtained in [BRS15] (see
also [HV16] for a different proof).

Other Problems in the Literature Captured by Quadratic Maximization The bilinear `p case
captures the problem of certifying hypercontractivity which in turn has connections to small set
expansion and quantum separability ([BBH+12]). Vertex expansion and a related analytic proxy
([LRV13]) can be cast as quadratic maximization, and so can densest-k-subgraph, sparse-PCA, the
spread constant of a metric [ABS98], and the poincare constant (in discrete domains). Approx-
imability/inapproximability aspects of these expansion-type problems have been the subject of a
large body of work. Expansion-type problems are of interest in part due to their connection to the
unique games conjecture, and also due to their relevance to hardness results for optimization over
pseudo-random instances.

The versatility of quadratic maximization is evident from being able to For appropriate choices
of linear maps and convex sets, quadratic maximization also captures (upto constants) the max-
imization (in absolute value) of homogeneous polynomials of any constant degree. Homoge-
neous polynomial maximization is a very expressive class of problems in its own right, and has
connections to quantum information theory [BBH+12], refuting random constraint satisfaction
problems [RRS16], statistical physics, tensor principal component analysis and tensor decomposi-
tion [BKS15, GM15, MR14, HSS15], game theory, control theory and population dynamics [DK08].

Quadratic maximization also captures problems of interest in compressed sensing and coding
theory, like subspace distortion, or the sparsest vector in a subspace.
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2 Detailed Preliminaries

2.1 Vectors and Matrices

All vectors we consider are finite dimensional and real valued (with the exception of Section 6.4
where we consider complex entries). We denote the elementary basis of Rn by e1, e2 . . . en. Vec-
tors are denoted by lower-case letters (x, y, z, v, . . . ) and we often refer to sequences of vectors
x1, x2, · · · ∈ Rn indexed by subscripts. We also use subscripts to denote entries of a vector (e.g.
for x ∈ Rn, xi denotes its i-th entry), but the distinction between entries of a single vector and a
sequence of vectors will be clear in context. For example, (xi)j denotes the j-th entry of vector xi.

Matrices are always finite dimensional and are denoted by upper-case letters
(A, B, C, M, W, . . . ). For a field F ∈ {R, C}, let Mn(F) (resp. Mn,m(F)) be the set of all
n × n (resp. n × m) matrices whose entries are from F. We use PSDn to denote the set of
symmetric positive semidefinite (henceforth PSD) matrices in Mn(R). We (mostly) use upper case
blackboard-bold letters (X, Y, W, . . . ) to denote matrices that are the indeterminates in a convex
program. Given a vector v ∈ Rn, let Diag(v) ∈ Mn(R) be such that (Diag(v))i,j = vi if i = j and 0
otherwise. Similarly, given a matrix A ∈ Mn(R), diag(A) is an n-dimensional vector defined as

(diag(A))i
def
= Ai,i. For a vector or matrix, let bit(·) denote its bit complexity, which is the number

of bits used to represent it.

2.2 Norms

In this paper we consider exclusively finite dimensional norms denoted as ‖·‖X. Throughout, the
underlying vector space is finite dimensional euclidean space Rn, with the exception of Section 6.4
where we discuss complex interpolation and hence the underlying space is Cn.

We denote the unit ball of a norm ‖·‖X over Rn by Ball(X)
def
= {x ∈ Rn | ‖x‖X 6 1}. Ball(X) is

an origin-symmetric (i.e., Ball(X) = −Ball(X)) convex body. Recall that every origin symmetric

convex body C ⊆ Rn (i.e., C = −C) can be realized as the unit ball of a norm defined as |||x||| def
=

infλ>0{x/λ ∈ C} (||| · ||| is called the Minkowski functional of C). Thus there is a one-to-one
correspondence between norms and origin symmetric convex bodies.

In this work we assume norms are given as input to algorithms via membership oracles, i.e.,
an oracle that takes x ∈ Rn as input and returns “Inside” if x ∈ Ball(X) and “Outside” otherwise
Equivalently (using binary search) one can assume there is an oracle returning ‖x‖X given input
x ∈ Rn.

Recall the dual norm ‖·‖X∗ over Rn is given by

‖ξ‖X∗
def
= max

x∈Ball(X)
〈ξ , x〉

and that Ball(X∗) = Ball(X)◦ where the polar of a set B is defined as {ξ | 〈x , ξ〉 6 1∀x ∈ B}. By
the bipolar theorem (Theorem 2.4) we also conclude Ball(X) = Ball(X∗)◦ which implies ‖·‖(X∗)∗ =
‖·‖X.

We will repeatedly use the following inequality due to Kahane [Kah64].

Theorem 2.1 (Kahane-Khintchine Inequality). Consider any 1 6 p < ∞. Then there are constants
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Cp , C′p .
√

p, such that for every finite sequence of vectors {xi} in a normed space X,

1
C′p

6
E [‖∑i gixi‖p

X]
1/p

E [‖∑i gixi‖X]
6 Cp .

Type-2/cotype-2 constants of a norm are powerful classification tools from Banach space the-
ory and informally speaking, provide upper/lower bounds on the expected deviation (measured
according to the ambient norm) of a random walk from the origin. Formally,

Definition 2.2 (Type-2/Cotype-2). The (Gaussian) type-2 constant of a normed space X, denoted by
T̃2(X), is the smallest constant C such that for every finite sequence of vectors {xi} in X,

E
[
‖∑i gi · xi‖2

X
]
6 C2 ·∑

i
‖xi‖2

X

where each gi is an independent standard Gaussian.

The (Gaussian) cotype-2 constant of a normed space X, denoted by C̃2(X), is the smallest constant C
such that for every finite sequence of vectors {xi} in X,

E
[
‖∑i gi · xi‖2

X
]
>

1
C2 ·∑

i
‖xi‖2

X

C̃2(X∗) and T̃2(X) are closely related; in particular C̃2(X∗) 6 T̃2(X) and if X is n-dimensional
then T̃2(X) . C̃2(X∗) · log n.

The Gaussian and rademacher type-2 (resp. cotype-2) constants are equivalent within univer-
sal constants. More specifically one has T̃2(X) 6 T2(X) . T̃2(X) and C̃2(X) 6 C2(X) . C̃2(X)
(se [MP76]). In the sequel we work mostly with the Gaussian type-2/cotype-2 constants since in
certain places this allows us to provide slightly more precise estimates.

2.3 Polar Operations

In this paper, we use three different notions of polars, and use them to derive equivalences be-
tween approximate optimization and approximate separation over various sets. Here we intro-
duce the three notions, beginning with the usual notion of polar.

Definition 2.3 (Standard Polar in Rn). Let B ⊆ Rn. The polar of B is B◦ def
= {ξ ∈ Rn | 〈ξ , x〉 6

1 ∀x ∈ B}. Note that B◦ is always convex and moreover conv(B)◦ = B◦.

This notion has the following nice duality statement.

Theorem 2.4 (Standard Bipolar Theorem). Let B ⊆ Rn be a origin-symmetric convex body. Then we
have (B◦)◦ = B.

The other two notions of polars are defined with respect to a self-dual cone K ⊆ Rn. In this
paper we will consider either the non-negative orthant or the positive semidefinite cone. We first

define the notions of upward-closedness and downward-closedness. Given B ⊆ K, let ↑B def
=

(B + K) ∩ K and ↓B def
= (B− K) ∩ K denote upward and downward closures respectively, where

+ and − denote Minkowski addition and subtraction respectively. B is said to be upward-closed
when ↑B = B and downward-closed when ↓B = B.

We now define a conic version of the polar operation for a subset B ⊆ K.
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Definition 2.5 (Conic Polars). Let K ⊆ Rn be a self-dual cone. We define the polar of a set B ⊆ K (with

respect to K) as B◦K def
= {ξ ∈ K | 〈ξ , x〉 6 1 ∀x ∈ B}. Note that B◦K is always convex and moreover

conv(B)◦K = B◦K.

For any A ⊆ K, A◦K is downward-closed; indeed if y ∈ A◦K and z = y− w for some w ∈ K,
then 〈z, x〉 6 〈y, x〉 6 1 for all x ∈ A. We require a conic version of the bipolar theorem. As we
could not locate a reference for this, we include a proof here.

Fact 2.6 (Conic Bipolar Theorem). Let K ⊆ Rn be a self-dual cone. Let B ⊆ K be a bounded, closed and
convex set containing the origin. Then (B◦K)◦K = ↓B.

Proof. By definition, B ⊆ (B◦K)◦K. Since A◦K is downward-closed for any A, ↓B ⊆ (B◦K)◦K. For
the other direction, assume towards contradiction that x ∈ (B◦K)◦K r ↓B. Since x ∈ K, it implies
x /∈ B− K. Since B− K is also convex and closed (this follows since B is closed and bounded and
K is closed), by Hahn-Banach separation theorem there exists y ∈ Rn such that 〈x, y〉 > c and
〈z, y〉 < c for all z ∈ B− K. We claim that y ∈ K; otherwise, there exists w ∈ K with 〈y, w〉 < 0,
and 〈y,−αw〉 = −α〈y, w〉 > c for large enough α > 0 with−αw ∈ B− K, leading to contradiction.
Since B contains 0, c > 0. Then y/c ∈ B◦K, so 〈x, y/c〉 > 1 contradicts that x ∈ (B◦K)◦K.

We define a third notion of polar, namely the inverse polar, again with respect to a self-dual cone
K, but this time it is the set of elements whose inner product with every element of the original set
is at least 1.

Definition 2.7 (Inverse Polar). Let K ⊆ Rn be a self-dual cone. For a set B ⊆ K and c ∈ R, we define

B�c
def
= {ξ | 〈ξ , x〉 > c ∀x ∈ B}, and let B� := B�1 . Note that B� is always convex and moreover

conv(B)� = B�.

We will consider B contained in a self-dual cone K ⊆ Rn. By definition, B ⊆ (B�)� for any B.
Under the above condition on B, they are indeed equal. We include a proof below.

Fact 2.8 (Inverse Bipolar Theorem). Let B be a closed, convex, and upward-closed set contained in some
self-dual cone K ⊆ Rn. Then (1) B� is a closed, convex and upward-closed set contained in K, and (2)
(B�)� = B.

Proof. Closure follows straightforwardly from the definition.
We next show that B� is also upward-closed. For any x ∈ B�, y ∈ K, and z ∈ B, the definition

of B� implies 〈x, z〉 > 1, and the self-duality of K implies 〈y, z〉 > 0. Therefore, 〈x + y, z〉 > 1,
implying x + y ∈ B�.

We also show that B� ⊆ K. More strongly, we show that the set B�c for any c ∈ R is contained
in K. Assume towards contradiction that there exists y ∈ B�c r K. By the self-duality of K, there
exists z ∈ K with 〈z, y〉 < 0. Let x ∈ B. By the upward-closedness of B, x + αz ∈ B for any
α > 0, but 〈y, x + αz〉 = 〈y, x〉+ α〈y, z〉will be strictly less than c for large enough α, achieving the
desired contradiction.

Therefore, B� is a convex, and upward-closed set contained in K. The same argument implies
convexity and upward-closedness of (B�)�.

Finally, we prove (B�)� = B. Assume towards contradiction that there exists x ∈ (B�)� r B.
Since B is closed and convex, there exist y ∈ Rn and c ∈ R such that 〈x, y〉 < c and 〈z, y〉 > c for all
z ∈ B. In particular, y ∈ B�c , which implies that y ∈ K. Since x ∈ (B�)� ⊆ K, 〈x, y〉 > 0, so c > 0.
Then y/c satisfies 〈z, y/c〉 > 1, so y ∈ B�, but 〈x, y/c〉 < 1, so it contradicts that x ∈ (B�)�.
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2.4 Quadratic Maximization and Related Optimization Problems

We are primarily interested in approximation algorithms for maximizing a quadratic form over
an origin-symmetric convex body. Formally we define,

Definition 2.9 (Quadratic Maximization).
For an n× n matrix A and a norm ‖·‖X over Rn, we define quadratic maximization of A over X as

Qmax
X (A)

def
= max

x∈Ball(X)
〈x , Ax〉 . (24)

We will also be interested in two special cases of quadratic maximization; namely, quadratic
maximization of PSD instances and bilinear form maximization over C1×C2 for origin-symmetric
convex bodies C1, C2. We define some notation for the bilinear case:

Definition 2.10 (Bilinear Maximization/Operator Norm).
For an n×m matrix A and norms ‖·‖X, ‖·‖Y over Rn and Rm respectively, we define bilinear maximiza-
tion of A over (X, Y), as

Opmax
X,Y(A)

def
= max

x∈Ball(X)
y∈Ball(Y)

〈x , Ay〉 . (25)

By definition of the dual norm, bilinear maximization can be cast as the operator norm/distortion of A when
A is thought of as a linear map from Y to X∗. Formally we have,

‖A‖Y→X∗
def
= max

y∈Ball(Y)
‖Ay‖X∗ = max

x∈Ball(X)
y∈Ball(Y)

〈x , Ay〉 = max
x∈Ball(X)
y∈Ball(Y)

〈A∗x , y〉 = ‖A‖X→Y∗

thus ‖A‖Y→X∗ = ‖A‖X→Y∗ = Opmax
X,Y(A) . (26)

Throughout this document, we will switch notation between operator norms and bilinear maximization
based on convenience and context.

Bilinear maximization can be reduced to quadratic maximization using the following identity

Opmax
X,Y(A) = Qmax

X⊕∞Y(B) where B def
=

1
2
·
[

0 A
A∗ 0

]

where ‖·‖X⊕∞Y is a norm over Rn+m defined as ‖(x, y)‖X⊕∞Y
def
= max{‖x‖X, ‖y‖Y} and whose unit

ball is given simply by Ball(X)× Ball(Y).
We will repeatedly use the following simple property that relates quadratic maximization of a

PSD matrix over X to bilinear maximization over (`n
2 , X):

Qmax
X (B∗B) = max

x∈Ball(X)
‖Bx‖2

2 = ‖B‖2
X→`n

2
= ‖B∗‖2

`n
2→X∗ . (27)

Intuitively, this is useful because it transforms a search problem over Ball(X) to a search problem
over Ball(`n

2). Quadratic maximization of a PSD matrix W � 0 over X is in fact equal to bilinear
maximization of W over (X, X). Indeed by Cauchy-Schwarz we have

Opmax
X,X(B∗B) = max

x,y∈Ball(X)
〈x , B∗By〉 = max

x,y∈Ball(X)
〈Bx , By〉 6 max

x,y∈Ball(X)
‖Bx‖2‖By‖2 = ‖B‖2

X→2 .
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The inequality in the reverse direction follows by considering the substitution y = x = x′ where
x′ is the vector maximizing ‖B‖X→2.

We will also consider quadratic maximization over sections of convex sets, i.e., maximization
over V ∩ Ball(X) where V is a subspace. Upto a factor of 1 + o(1), maximization over V ∩ Ball(X)
can be captured by the maximization over Ball(X) by adding a large negative multiple of the
projector to the orthogonal complement V⊥. This is formalized in Observation 6.13.

The final special case of quadratic maximization we will consider is the minimum factor by
which a linear map shrinks a unit vector. (it can be seen as a special case of quadratic maximization
by reducing first to subspace quadratic maximization).

Definition 2.11 (Contractivity of a Linear Map).
For an n× m matrix A and norms ‖·‖X, ‖·‖Y over Rn and Rm respectively, we define the Y → X con-
tractivity of A as

‖A‖min
Y→X

def
= inf
‖y‖Y=1

‖Ay‖X = inf
y 6=0
‖Ay‖X/‖y‖Y (28)

We will be concerned with the case of invertible n × n matrices A, where one has the following
useful connection with operator norm (bilinear maximization):

‖A‖min
Y→X = inf

‖y‖Y=1
‖Ay‖X = inf

‖Ay‖X=1

1
‖y‖Y

= inf
‖x‖X=1

1
‖A−1x‖Y

= inf
x 6=0

‖x‖X

‖A−1x‖Y
=

1
‖A−1‖X→Y

. (29)

2.5 Projective Tensor Norm and Related Measures

Let ‖·‖X, ‖·‖Y be norms over Rn and Rm respectively. As we make extensive use of duality (and
algorithmic versions thereof) in this work, it will be useful for us to investigate the polars of the
following level sets:

{A ∈ Mn(R) | Qmax
X (A) 6 1} , {A ∈ Mn,m(R) | Opmax

X,Y(A) 6 1} .

2.5.1 Polars of Various Sets of Bounded Forms.

Polar of Bounded Bilinear Forms. We begin by discussing the bilinear case where the polar has
been extensively studied in the context of the metric theory of tensor products. Opmax

X,Y(·) is easily
checked to be a norm on the space Mn(R) ≡ Rn ⊗Rn and is known as the injective tensor norm.
While the injective tensor norm is typically denoted as ‖·‖X∗ q⊗Y∗ , we choose to use the unorthodox
notation of Opmax

X,Y(·) for convenience in later sections.
The dual norm of ‖·‖X∗ q⊗Y∗ is called the projective tensor norm ‖·‖X⊗̂Y and has the following

representation

‖Ξ‖X⊗̂Y
def
= inf ∑

i
‖xi‖X · ‖yi‖Y = inf (∑i ‖xi‖2

X)
1/2 · (∑i ‖yi‖2

Y)
1/2 (30)

where the infimum runs over all finitary decompositions Ξ = ∑i xiy∗i . The unit ball of the projec-

tive norm is given simply by Ball(X⊗̂Y) def
= conv({xy∗ | x ∈ Ball(X) , y ∈ Ball(Y)}). We include a

derivation of the injective/projective duality which arises quite naturally. Observe that

Opmax
X,Y(A) = max

x∈Ball(X),y∈Ball(Y)
〈x , Ay〉 = max

x∈Ball(X),y∈Ball(Y)
〈A , xy∗〉 = max

Ξ∈Ball(X⊗̂Y)
〈A , Ξ〉 .
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From the final equality we see that the set of bounded bilinear forms {A ∈ Mn,m(R) | Opmax
X,Y(A) 6

1} = {A ∈ Mn,m(R) | maxΞ∈Ball(X⊗̂Y) 〈A , Ξ〉 6 1} is precisely Ball(X⊗̂Y)◦. It is then easily
checked that ‖·‖X⊗̂Y as defined above is the Minkowski functional of conv({xy∗ | x ∈ Ball(X) , y ∈
Ball(Y)}). Thus Opmax

X,Y(·) and ‖·‖X⊗̂Y are dual norms and therefore also satisfy

‖Ξ‖X⊗̂Y = max
Opmax

X,Y (A)61
〈A , Ξ〉 .

Polar of Bounded Quadratic Forms. Let BSym
∧ (X)

def
= conv({xx∗ | x ∈ Ball(X)}). Similar to the

bilinear case, we observe that Qmax
X (A) = max

X∈BSym
∧ (X)

〈A , X〉 and therefore the set of bounded

quadratic forms {A ∈ Mn(R) | Qmax
X (A) 6 1} is the polar of BSym

∧ (X). Restricted to the PSD cone
PSDn, we may consider the Minkowski functional of BSym

∧ (X) which is given by

∧Sym
X (X)

def
= inf ∑

i
‖xi‖2

X

where the infimum runs over all finitary decompositions X = ∑i xix∗i . Note also that by definition
of ∧Sym

X (·), BSym
∧ (X) can be alternatively described as {X ∈ PSDX | ∧Sym

X (X) 6 1} (note that this
is not the unit ball of any norm). We caution the reader that even though ∧Sym

X (·) is homogeneous
and satisfies triangle inequality, it is not a norm as it is defined only within the PSD cone. It may
be useful to think of ∧Sym

X (X) as a symmetric version of the projective tensor norm ‖·‖X⊗̂X.

Conic Polar of Bounded PSD Quadratic Forms. Since BSym
∧ (X) is a subset of the PSD cone which

is self-dual, it is possible and beneficial to study its conic polar BSym
∧ (X)◦PSDn

which is in fact the
set of bounded PSD quadratic forms, i.e.,

BSym
∧ (X)◦PSDn

= {W ∈ PSDn | Qmax
X (W) 6 1} .

Thus by the conic version of the bipolar theorem (Fact 2.6) we have (BSym
∧ (X)◦PSDn

)◦PSDn
=

↓BSym
∧ (X). From this we conclude ↓BSym

∧ (X) and the set of bounded PSD quadratic forms are (coni-
cally) polar to one another:

(↓BSym
∧ (X))◦PSDn

= {W ∈ PSDn | Qmax
X (W) 6 1}

↓BSym
∧ (X) = {W ∈ PSDn | Qmax

X (W) 6 1}◦PSDn
. (31)

Restricted to the PSD cone PSDn, we may describe the Minkowski functional of ↓BSym
∧ (X)

∧↓Sym
X (X)

def
= inf

Y�X
∧Sym

X (Y)

which can be thought of as a symmetric and monotone (in the Loewner ordering) variant of the
projective tensor norm ‖·‖X⊗̂X.

Inverse Polar of Non-Contractive Linear Maps. Recall that B� def
= {y | 〈y , x〉 > 1 ∀x ∈ B} and

that ‖U‖min
X∗→2

def
= inf‖ξ‖X∗=1‖Uξ‖2. In this subsection we wish to describe {U∗U | ‖U‖min

X∗→2 > 1}�.

Let B ↑∧(X)
def
= conv({ξξ∗ | ‖ξ‖X∗ > 1}). Observe that

(‖U‖min
X∗→2)

2 = inf
‖ξ‖X∗>1

‖Uξ‖2
2 = inf

‖ξ‖X∗>1
〈U∗U , ξξ∗〉 = inf

W∈B ↑∧(X)
〈U∗U , W〉 .
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Thus we have {U∗U | ‖U‖min
X∗→2 > 1} = B ↑∧(X)�. Furthermore since {U∗U | ‖U‖min

X∗→2 > 1} is
a closed, convex and upward-closed (in the Loewner ordering) subset of PSDn, we may apply a
version of the bipolar theorem for upward-closed sets (Fact 2.8) to obtain

B ↑∧(X)� = {U∗U ∈ Mn(R) | ‖U‖min
X∗→2 > 1} (32)

and moreover that B ↑∧(X) is closed, convex and upward-closed.
We give a second description of B ↑∧(X). To this end we define for any W ∈ PSDn,

∧↑X(W)
def
= sup ∑i‖wi‖2

X∗ . (33)

where the supremum runs over all finitary decompositions W = ∑i wiw∗i . It is then easily checked
that B ↑∧(X) = {W � 0 | ∧↑X (W) > 1}.

2.5.2 Covariance Regions and their Connection to Projective Norm and Related Measures

We define the upper (resp. lower) covariance region which, as discussed in the introduction allow
us to formulate a generic approximate convex optimization approach to quadratic (resp. PSD
quadratic) maximization in the presence of type-2 (resp. dual cotype-2).

Definition 2.12 (Gaussian Rounding Function).
For a norm X over Rn and i.i.d. standard Gaussians g = (g1, . . . , gn) we define the Gaussian Rounding

Function NX(·) : PSDn → R>0 as NX(X)
def
= E [‖X1/2g‖2

X].

Remark 2.13. Since a Gaussian distribution is uniquely determined by its first two moments, we may
alternatively define NX(X) as E [‖∑i gi · xi‖2

X] where (xi) is any finite sequence satisfying X = ∑i xix∗i .

In fact |||(xi)||| def
= E[‖∑i gi · xi‖2

X]
1/2 defines a norm on the space of sequences of a fixed length.

Definition 2.14 (Upper Covariance Body).
We define the Upper Covariance Body denoted by U (X) as {X � 0 | NX(X) 6 1}.

Definition 2.15 (Lower Covariance Region).
We define the Lower Covariance Region denoted by L(X) as {W � 0 | NX∗(W) > 1}.

The lower covariance region is the complement of (the interior of) the upper covariance region of the
dual, i.e., L(X) = PSDn r Int(U (X∗)).

NX(·) is known to be non-decreasing (in the Loewner ordering). We include a proof below:

Fact 2.16. NX(·) is non-decreasing in the Loewner ordering.

Proof. It suffices to show that for any X , Y ∈ PSDn, we have NX(X) 6 NX(X + Y). Let
g1, . . . , gn, h1, . . . , hn, z1, . . . zn be i.i.d. standard Gaussians. Observe that the vector X1/2g has co-
variance X and that the vectors X1/2g ±Y1/2h, both have covariance X + Y. Thus (X + Y)1/2z
has the same distribution as each of the vectors X1/2g±Y1/2h. Therefore we have,

NX(X)1/2 = E
g
[‖X1/2g‖2

X]
1/2

6
1
2
· E
g,h

[‖X1/2g+ Y1/2h‖2
X]

1/2 +
1
2
· E
g,h

[‖X1/2g−Y1/2h‖2
X]

1/2

= E
z
[‖(X + Y)1/2z‖2

X]
1/2
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= NX(X + Y)1/2

where the first inequality is an application of the triangle inequality in the space L2(Rn, γ) where
γ denotes the n-variate Gaussian measure.

The next observation relates the bodies U (X) , BSym
∧ (X) , ↓BSym

∧ (X) , Ball(X⊗̂X) ∩PSDn.

Observation 2.17 (Relating Projective Measures to Gaussian Rounding Function).
Let X be a finite dimensional normed space. For any X ∈ PSDn, we have,

∧↓Sym
X (X) 6 ‖X‖X⊗̂X 6 ∧Sym

X (X) 6 NX(X) 6 T̃2(X)2 · ∧↓Sym
X (X) .

This implies the inclusions

T̃2(X)−2 · ↓BSym
∧ (X)

⊆ U (X)

⊆ BSym
∧ (X) = conv({xx∗ | x ∈ Ball(X)})

⊆ Ball(X⊗̂X) ∩PSDn = conv({xy∗ | x, y ∈ Ball(X)}) ∩PSDn

⊆ ↓BSym
∧ (X) = ↓conv({xx∗ | x ∈ Ball(X)}) .

Proof. Let X � 0. For the first inequality, assume ‖X‖X⊗̂X 6 1. Then by definition there ex-
ist finite sequences (ui), (vi) such that X = ∑i uiv∗i and ∑i ‖ui‖2

X , ∑i ‖vi‖2
X 6 1. Also we have

∑i(uiu∗i + viv∗i )/2 � ∑i uiv∗i /2 + ∑i viu∗i /2 = ∑i uiv∗i = X, where the second last equality follows
by symmetry of X. By assumption on (ui), (vi), we conclude ∧Sym

X (∑i(uiu∗i + viv∗i )/2) 6 1. Thus
∧↓Sym

X (X) = infY�X ∧Sym
X (X) 6 1.

The second inequality is immediate.

For the third inequality we approximate the Gaussian integral E [‖X1/2g‖2
X] by a sequence of finite

sums to obtain a sequence of upper bounds on ∧Sym
X (X) that converge to NX(X).

For the fourth inequality, consider any Y � X and any fixed decomposition Y = ∑i yiy∗i . Now
since NX(·) is non-decreasing in the Loewner ordering (Fact 2.16), we have

NX(X) 6 NX(Y) 6 T̃2(X)2 ·∑
i
‖yi‖2

X

where the final inequality in the preceding equation follows from the definition of the Gaussian
type-2 constant. Taking infimum over all Y � X and all decompositions of Y completes the proof
of the claim.

Remark 2.18. It is clear from the proof that T̃2(X)2 is the best possible constant in the fourth inequality.

Observation 2.17 allows us to prove approximate convexity of the upper covariance body.

Observation 2.19 (Convex Hull of U (X) and Approximate Convexity).
conv(U (X)) = BSym

∧ (X) = conv({xx∗ | x ∈ Ball(X)}) and moreover U (X) is T̃2(X)2-approximately
convex.

Proof. By Observation 2.17 we have U (X) ⊆ BSym
∧ (X) and so conv(U (X)) ⊆ BSym

∧ (X). On the other
hand U (X) ⊇ {xx∗ | x ∈ Ball(X)} and so conv(U (X)) ⊇ conv({xx∗ | x ∈ Ball(X)}) = BSym

∧ (X).
We conclude that conv(U (X)) = BSym

∧ (X). This yields the first claim.
By Observation 2.17 again, we have U (X) ⊆ conv(U (X)) ⊆ T̃2(X)2 · U (X). This yields the

second claim.
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The next observation relates the regions L(X) , B ↑∧(X).

Observation 2.20. For any W ∈ PSDn, we have C̃2(X∗)−2 · ∧↑X(W) 6 NX∗(W) 6 ∧↑X(W). Equiva-
lently, B ↑∧(X) ⊇ L(X) ⊇ C̃2(X∗)2 · B ↑∧(X).

Proof. For the first inequality we approximate the Gaussian integral E [‖W1/2g‖2
X∗ ] by a sequence

of finite sums to obtain a sequence of lower bounds on ∧↑X(W) that converge to NX∗(W).
For the second inequality, we observe a stronger fact: namely it is true for any fixed decom-

position W = ∑i wiw∗i . Indeed NX∗(W) > C̃2(X∗)2 · ∑i ‖wi‖2
X∗ simply by the definition of the

Gaussian cotype-2 constant. The claim follows.

Remark 2.21. It is clear from this proof that C̃2(X∗)2 is the best possible constant for which the first
inequality holds.

Observation 2.20 allows us to prove approximate convexity of the lower covariance region.

Observation 2.22 (Convex Hull of U (X) and Approximate Convexity).
conv(L(X)) = B ↑∧(X) = conv({xx∗ | ‖x‖X∗ > 1}) and moreover L(X) is C̃2(X∗)2-(inverse) approxi-
mately convex.

Proof. By Observation 2.20 we have L(X) ⊆ B ↑∧(X) and so conv(U (X)) ⊆ B ↑∧(X). On the other
hand U (X) ⊇ {xx∗ | ‖x‖X∗ > 1} and so conv(L(X)) ⊇ conv({xx∗ | ‖x‖X∗ > 1}) = B ↑∧(X). We
conclude that conv(U (X)) = B ↑∧(X). This yields the first claim.

By Observation 2.20 again, we have L(X) ⊆ conv(L(X)) ⊆ C̃2(X∗)−2 · L(X). This yields the
second claim.

Remark 2.23. While we work predominantly over Rn, in Section 6.4 we consider finite dimensional
complex normed spaces. Every definition/claim in this Section 2.5 generalizes verbatim to the complex

case where we replace Mn,m(R) by Mn,m(C) and PSDn by PSDCn def
= conv({xx∗ | x ∈ Cn}). For

A, B ∈ PSDCn
, we write A � B if A− B ∈ PSDCn

.

2.5.3 Verification of Balance

The purpose of this section is to verify that all of the sets/functions to which we apply the ap-
proximate ellipsoid method satisfy certain sanity-conditions that are necessary for multiplicative
approximation guarantees. We refer to these conditions as “balance”, as defined below.

We say a norm ‖·‖X is (R, r)-balanced if Ball(X) contains a euclidean ball of radius r and
is contained in a euclidean ball of radius R. We say a set B ⊆ PSDn is (R, r, PSDn)-balanced if
r(PSDn ∩ Ball(`n×n

2 )) ⊆ B ⊆ R(PSDn ∩ Ball(`n×n
2 )). We also say that a set B ⊆ PSDn is inverse-

(R, r, PSDn)-balanced if r · Ball(`n×n
2 ) ∩ B = ∅ and {M ∈ PSDn : ‖M‖`n×n

2
= R} ⊆ B.

For a cone K, we say a function f : K → R is (R, r, K)-balanced if (1) satisfies r · f (x) 6 ‖x‖2 6
R · f (x) for all x ∈ K, and (2) satisfies ‖ f (x) − f (y)‖ 6 R‖x − y‖2 for all x, y ∈ K. We say
f : Rn → R is (R, r)-balanced if it is (R, r, Rn)-balanced.

Throughout this text we make the assumption in our algorithmic results that ‖·‖X is (R, r)-
balanced. In this section we verify that such an assumption on ‖·‖X implies that the associated
sets/functions in Section 2.5 also satisfy appropriate versions of balance, which is required in
order to optimize over them.
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Lemma 2.24. Let X = (Rn, ‖·‖X) , Y = (Rm, ‖·‖Y) be (R, r)-balanced. Then there exist R′, 1/r′ =
poly(n, R, 1/r) and R′′, 1/r′′ = poly(n, m, R, 1/r) such that
(1) Ball(X⊗̂Y), Opmax

X,Y(·) and Ball(Opmax
X,Y(·)) are (R′′, r′′)-balanced.

(2) U (X) , BSym
∧ (X) , ↓BSym

∧ (X) and Qmax
X (·) are (R′, r′, PSDn)-balanced.

(3) L(X) , B ↑∧(X) are inverse-(R′, r′, PSDn)-balanced.

Proof. We begin by showing (1). Recall the `m
2 → `n

2 -operator norm can be written as

‖M‖2→2 = max
‖x‖2 ,‖y‖261

〈x , My〉

and combining with the balance condition on X, Y, we obtain

r2 · ‖M‖2→2 6 Opmax
X,Y(M) 6 R2 · ‖M‖2→2 .

Now since ‖M‖2→2 6 ‖M‖`n×m
2

6 max{√n,
√

m} · ‖M‖2→2, it follows that {A ∈
Mn,m(R) | Opmax

X,Y(A) 6 1} = Ball(Opmax
X,Y(·)) is (max{√n/r2,

√
m/r2}, 1/R2)-balanced. By

polarity, we conclude Ball(X⊗̂Y) is (R2, min{r2/
√

n, r2/
√

m})-balanced. To show balance of
Opmax

X,Y(·) is balanced (as a function), we are left with checking Lipschitzness. By triangle in-
equality we have |Opmax

X,Y(A) − Opmax
X,Y(B)| 6 Opmax

X,Y(A − B) 6 R2 · ‖A − B‖`n×m
2

. Thus Opmax
X,Y(·)

is (poly(n, R, 1/r), 1/poly(n, R, 1/r))-balanced.
We now show (2). From (1) we conclude that Ball(X⊗̂X) ∩ PSDn is

(R2, min{r2/
√

n, r2/
√

m}, PSDn)-balanced. Combining with the equivalences in Ob-
servation 2.17 and the fact that T̃2(X) 6

√
n implies that U (X) , BSym

∧ (X) , ↓BSym
∧ (X) are

(poly(n, R, 1/r), 1/poly(n, R, 1/r), PSDn)-balanced. It remains to show Lipschitzness of Qmax
X (·)

restricted to PSDn, but this follows from Lipschitznes of Opmax
X,X(·) since for any W � 0, we have

Qmax
X (W) = Opmax

X,X(W). Thus Qmax
X (·) is (poly(n, R, 1/r), 1/poly(n, R, 1/r), PSDn)-balanced.

Finally we establish (3). We first show B ↑∧(X) is inverse-
(poly(n, R, 1/r), 1/poly(n, R, 1/r), PSDn)-balanced. Then by the equivalence in Ob-
servation 2.20 and the fact that C̃2(X∗) 6

√
n, we also obtain that L(X) is inverse-

(poly(n, R, 1/r), 1/poly(n, R, 1/r), PSDn)-balanced. To this end, observe that for any W � 0 and
any finite decomposition W = ∑i wiw∗i , we have

Tr(W) = ∑
i
‖wi‖2

2 .

From this as well as the balance of X∗ (which follows from balance of X) we conclude that
∧↑X(W) and Tr(W) are equivalent within poly(R, 1/r). Now since Tr(W) and ‖W‖`n×n

2
are equiv-

alent within
√

n (assuming W � 0), we conclude that ∧↑X(W) and ‖W‖`n×n
2

are equivalent within
poly(n, R, 1/r) which immediately implies the desired inverse-balance of B ↑∧(X). This completes
the proof.

Remark 2.25. In Section 3, we use an approximate version of the ellipsoid method to give multiplicative ap-
proximation algorithms for various tasks (Proposition 3.11,Proposition 3.12,Theorem 3.14,Theorem 3.16),
provided the appropriate balance conditions are satisfied. In all the settings in this text wherein we apply
the above theorems, the associated balance conditions are satisfied as a consequence of Lemma 2.24.
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2.6 Oracle Algorithms

In this work, an oracle algorithm denoted ALG(I1, I2, . . . ,O1,O2, . . . ) running in time T =
T(size(I1) + size(I2) + . . . ) is an algorithm that takes in a finite set of inputs I1, I2, . . . and a
finite set of oracles O1,O2, . . . , and terminates with an output after T steps, where at any given
step the algorithm is allowed to make black-box queries to any of the oracles and this counts as
a single step in the runtime. For a fixed oracle algorithm, the set of queries made to the oracles
is determined completely by the input I1, I2, . . . (and in the case of randomized algorithms, the
distribution of the set of queries is determined entirely by the input).

We define below some oracles making a repeated appearance in the sequel.

Definition 2.26 (Approximate Optimization Oracles.).
1. For a norm ‖·‖X over Rn an α-approximate search oracle for quadratic maximization over X

is an oracle that on any input A ∈ Mn(R) outputs a vector x ∈ Ball(X) satisfying 〈x , Ax〉 >
Qmax

X (A)/α.
2. For a norm ‖·‖X over Rn an α-approximate search oracle for PSD quadratic maximization over

X is an oracle that on any PSD input A � 0 outputs a vector x ∈ Ball(X) satisfying 〈x , Ax〉 >
Qmax

X (A)/α.
3. For norms (Rn, ‖·‖X) , (Rm, ‖·‖Y), an α-approximate search oracle for bilinear maximization

over X, Y is an oracle that on any input A ∈ Mn,m(R) outputs vectors x ∈ Ball(X) , y ∈ Ball(Y)
satisfying 〈x , Ay〉 > Opmax

X,Y(A)/α.

3 Approximate Convex Optimization

In this section, we provide optimization tools used in the paper. Intuitively, we show that if a set is
“approximately convex” and there is an “approximate separation oracle,” the ellipsoid algorithm
can be used to approximately minimize a convex function over the set.

3.1 Convex Optimization with an Approximate Separation Oracle

We start with our definition of approximate convexity. Recall that a set B ⊆ Rn is called star-shaped
with respect to the origin when [0, 1]B ⊆ B. We say that B ⊆ Rn is inverse star-shaped with respect to
the origin when [1, ∞)B ⊆ B, which is equivalent to that Rn r B is star-shaped with respect to the
origin.

Definition 3.1 (Approximately Convex Body).

1. Consider a body B ⊆ Rn star-shaped with respect to the origin. For α > 1, we shall say B is α-
approximately convex if every convex combination of points in B is contained in α · B. Equivalently
we have the inclusions B ⊆ conv(B) ⊆ α · B.

2. Consider a set B ⊆ Rn inverse star-shaped with respect to the origin. For α > 1, we shall say B is
α-inverse approximately convex if every convex combination of points in B is contained in B/α.
Equivalently we have the inclusions B ⊆ conv(B) ⊆ B/α.

Since conv(B) is contained in α · B (case 1) or B/α (case 2) in the above definition, the existence
of a separating hyperplane for a convex set implies the following.
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Definition 3.2 (Approximately Separable Body).

1. Let B ⊆ Rn be a body star-shaped with respect to the origin. For α > 1, we shall say B is α-(forward)
separable if whenever x is outside α · B, there exists a hyperplane separating x from B.

2. Let B ⊆ Rn be a set inverse star-shaped with respect to the origin. For α > 1, we shall say B is
α-(inversely) separable if whenever x is outside B/α, there exists a hyperplane separating x from
B.

Henceforth we drop the term “forward” or “inversely” whenever it is clear which definition is being
referred to.

Remark: α-approximate convexity implies α-separability.

Next, we define approximate separation oracles that return approximately separating hyper-
planes.

Definition 3.3 (Approximate Separation Oracle).

1. For α > 1, an α-approximate separation oracle for an α-separable body B ⊆ Rn, is an oracle that
on any input point x ∈ Rn, either correctly outputs “Inside” when x ∈ α · B or outputs a hyperplane
separating x from B.

Remark: In any ambiguous case, i.e., when x 6∈ B and x ∈ α · B, the oracle is allowed to either output
a hyperplane separating x from B or output “Inside”.

2. For α > 1, an α-approximate (inverse) separation oracle for an α-(inversely) separable set B ⊆
Rn, is an oracle that on any input point x ∈ Rn, either correctly outputs “Inside” when x ∈ B/α or
outputs a hyperplane separating x from B.

Remark: In any ambiguous case, i.e., when x 6∈ B and x ∈ B/α, the oracle is allowed to either output
a hyperplane separating x from B or output “Inside”.

Henceforth we drop the term “inverse” whenever it is clear which definition is being referred to.

The following simple observation will be useful for establishing approximate separation ora-
cles in various contexts.

Observation 3.4 (Oracle from Equivalence). Consider bodies B1, B2 ⊆ Rn satisfying B2 ⊆ B1 ⊆ α · B2
and let SO be a β-approximate separation oracle for B1. Then SO is also an αβ-approximate separation
oracle for B2.

Proof. Indeed if SO(x) returns “Inside”, then x ∈ α · B⇒ x ∈ αβ · B2. On the other hand if SO(x)
returns a hyperplane separating B1 from x, it of course separates B2 from x as desired.

The claim for approximate inverse separation oracles follows analogously.

A standard simplification step in convex optimization is to use binary search to reduce the
problem to the following decision task: given (exact) separation oracles for two convex bodies,
decide whether their intersection is empty. The ellipsoid method is a popular method for solving
this subroutine. We use a variant of the ellipsoid method to show that given approximate separa-
tion oracles (forward and inverse) for a set, we can efficiently decide whether the intersection of
two bodies is close to empty.
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Proposition 3.5 (Folklore: Approximate Ellipsoid Method).
Let C1 have an α1-approximate separation oracle SO1, C2 have an α2-approximate inverse separation oracle
SO2. Additionally, assume that C1 is contained in a (Euclidean) ball of radius R. There is an algorithm
ALG(R, ε,SO1,SO2) running in time poly(n, log R, log(1/ε)) returning one of the following:

1. A point x inside (α1C1) ∩ (C2/α2).

2. C1 ∩ C2 does not contain a (Euclidean) ball of radius ε.

Proof. We follow the ellipsoid algorithm. Start from an ellipsoid containing the ball of radius R
containing C1 ∩ C2. If both oracles return “Inside” when queried on the center x, then we know x
is in (α1C1)∩ (C2/α2). Otherwise, by definition of the separation oracles, we have for some i ∈ [2],
a hyperplane separating x and Ci. Lemma (3.2.10) of [GLS93] shows that one can compute a new
ellipsoid of volume e−1/5n times that of the original ellipsoid, while still maintaining containment
of C1 ∩ C2. If we continue this process T times without terminating and T satisfies

(ε/R)n > e−T/5n ⇔ T > 5n2 log(R/ε) ,

then the volume of the T-th ellipsoid (and therefore the volume of C1 ∩ C2) is smaller than that of
the Euclidean ball of radius ε.

We further note that Lemma 3.2.10 of [GLS93] ensures that each ellipsoid {y : 〈y− x , A−1(y−
x)〉 6 1} involved in the algorithm is described by a center x and a PSD matrix A of bit complexi-
ties at most p = poly(n, log R, log(1/ε)), where the result of each computation (possibly involving
irrational numbers) is rounded down to the closest integer multiple of 2−p.

We require some additional notation before proceeding. For a set K ⊆ Rn and ε > 0, let

K+
ε

def
= K + ε · Ball(`n

2) and K−ε
def
= {x : x + ε · Ball(`n

2) ⊆ K}, where + denotes the minkowski sum.
We may now combine binary search with Proposition 3.5 to approximately maximize a concave
function over a body with a (forward) approximate separation oracle.

Proposition 3.6 (Concave Maximization with an Approximate Separation Oracle).
Let C1 be a closed set satisfying x ∈ C1 ⇒ αx ∈ C1 for all α ∈ [0, 1], with an α1-approximate separation

oracle SO1. Let f be a homogeneous concave function such that f>λ
def
= {x : f (x) > λ} has an α2-

approximate inverse separation oracle SO2 and f>λ ∩ C1 ⊆ R · Ball(`n
2), for any λ > 0. Let OPT =

supx∈C1
f (x), and assume that Λ > OPT is given. Let ε > 0 and OPTε = supx∈(C1)

−
ε

f (x). There is
an algorithm ALG(R, Λ, ε,SO1,SO2) that, in time poly(n, log R, log Λ, log(1/ε)), returns y ∈ C1 that
satisfies

f (y) > (OPTε − ε)/(α1α2).

Proof. Starting from λ = Λ, we apply Proposition 3.5 (C1 ← C1 and C2 ← f>λ), and perform
binary search. In poly(log Λ, log(1/ε)) steps, we can find λ > 0 such that

1. There is a point x ∈ (α1 · C1) ∩ ( f>λ/α2).

2. C1 ∩ f>λ+ε does not contain a ball of radius ε.

(The first item is satisfied by λ = 0, and the second item is satisfied by λ = Λ.) The second item
implies OPTε 6 λ + ε. Therefore, y = x/α1 satisfies y ∈ C1 and

f (y) = f (x)/α1 > λ/(α1α2) > (OPTε − ε)/(α1α2),

which proves the claim.
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Similarly we can approximately minimize a concave function over a set with an (inverse)
approximate separation oracle.

Proposition 3.7 (Convex Minimization with an Approximate Separation Oracle).
Let C1 be a closed set with an α1-approximate inverse separation oracle SO1. Let f be a nonnegative,

homogeneous, and convex function such that f6λ
def
= {x : f (x) 6 λ} has an α2-approximate sep-

aration oracle SO2 for any λ > 0. Assume Λ > OPT and R > 0 are given such that OPT =
infx∈C1 f (x) = infx∈C1∩R·Ball(`n

2 )
f (x). Let ε > 0 and OPTε = infx∈(C1∩R·Ball(`n

2 ))
−
ε

f (x). There is an
algorithm ALG(R, Λ, ε,SO1,SO2) that, in time poly(n, log R, log Λ, log(1/ε)), returns y ∈ C1 that
satisfies

f (y) 6 (α1α2) · (OPTε + ε).

Proof. Starting from λ = Λ, we apply Proposition 3.5 (C1 ∩ R · Ball(`n
2)← f6λ and C2 ← C1), and

perform binary search. In poly(log Λ, log(1/ε)) steps, we can find λ > 0 such that

- There is a point inside x ∈ (α2 · f6λ) ∩ (C1/α1).

- ( f6λ−ε ∩ R · Ball(`n
2) ∩ C1) does not contain a ball of radius ε.

(The first item is satisfied by λ = Λ, and the second item is satisfied by λ = 0.) The second item
implies OPTε > λ− ε. Therefore, y = α1x satisfies y ∈ C1 and

f (y) = α1 f (x) 6 α1α2λ 6 (α1α2) · (OPTε + ε),

which proves the claim.

A subtle issue is that we require versions of Proposition 3.6 and Proposition 3.7 with multi-
plicative approximation guarantees. For this it is necessary to assume C1 and f have additional
properties, which is in contrast to the exact setting where such assumptions are not required. In
our work we only consider sets that are contained in some self-dual cone with the following ad-
ditional properties. For a vector b, let bit(b) be its bit complexity.

Definition 3.8 (Tractable Cone). We will say a closed, self-dual cone K ⊆ Rn is tractable if the following
properties hold:

(T1) Given y /∈ K, there is a polynomial time algorithm to find a hyperplane separating y and K.

(T2) Given y ∈ K that admits x ∈ K with 〈x , y〉 = 0, there is a polynomial time algorithm to find such a
vector x.

(T3) If y ∈ K does not admit such a x, minx∈K,‖x‖2=1〈x , y〉 > 2−poly(bit(y)).

(T4) For any y ∈ Rn, if maxx∈K,‖x‖261〈x , y〉 6= 0, then it is at least 2−poly(bit(y)).

(T5) For any ε > 0, there exists y ∈ K with ‖y‖2 6 poly(n) · ε such that y + ε · Ball(`n
2) ⊆ K.

We will only consider cases wherein K is the positive orthant or the positive semidefinite cone.

Definition 3.9 (Balanced Set/Function).
Let K be a tractable cone or Rn. We say a set B ⊆ Rn is (R, r, K)-balanced if (K ∩ r · Ball(`n

2)) ⊆ B ⊆
(K∩R ·Ball(`n

2)). When K is a tractable cone, we also say that a set B ⊆ K is inverse (R, r, K)-balanced if
r ·Ball(`n

2)∩ B = ∅ and {x ∈ K : ‖x‖2 = R} ⊆ B. We say a function f : Rn → R is (R, r, K)-balanced
if (1) satisfies r · f (x) 6 ‖x‖2 6 R · f (x) for all x ∈ K, and (2) satisfies ‖ f (x)− f (y)‖ 6 R‖x− y‖2 for
all x, y ∈ K.
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We can deduce the following property which states that if C is balanced, C−ε is not too much
smaller than C.

Lemma 3.10. Let K ⊆ Rn be a tractable cone or Rn itself. Let B be a closed, convex, and (R, r, K)-
balanced set. For any x ∈ B and ε ∈ (0, r/poly(n)), there exists y ∈ B such that ‖x − y‖2 6 ε and
y + rε

R·poly(n) · Ball(`n
2) ⊆ B.

Proof. By property (T5) of K and the fact that (K ∩ r · Ball(`n
2)) ⊆ B, for some α = r/poly(n), there

exists z ∈ K such that z + α · Ball(`n
2) ⊆ B and ‖z‖2 6 r/2. (If K = Rn, we can take z = 0.)

Fix x ∈ B and let T := {t ∈ z + α · Ball(`n
2) : ‖z− t‖2 = α, 〈z− x, z− t〉 = 0}, and consider

conv(x ∪ T) ⊆ B. Let θ be the angle ∠zxt for some t ∈ T, which does not depend on the choice
of t. Since ‖t − z‖2 = α and ‖x − t‖2 6 ‖x − z‖2 + ‖z − t‖ 6 R + r/2 + α 6 2R, sin θ > α

2R .
Let y be the point on xz which is at distance ε from x. Then the distance from y to the boundary
of conv(x ∪ T) is at least ε · sin θ > εα

2R . Therefore, y + εα
2R · Ball(`n

2) = y + rε
R·poly(n) · Ball(`n

2) is
contained in conv(x ∪ T) ⊆ B.

We now prove a multiplicative approximation version of Proposition 3.6.

Proposition 3.11 (Concave Maximization with an Approximate Separation Oracle).
Let K be a tractable cone or Rn and let C1 be an (R, r, K)-balanced set with an α1-approximate separation
oracle SO1. Let f be either a linear function 〈ξ, x〉 for some ξ ∈ Rn (in which case α2 = 1) or an

(R, r, K)-balanced, nonnegative, homogeneous, and concave function such that f>λ
def
= {x : f (x) > λ}

has an α2-approximate inverse separation oracle SO2 for any λ > 0. Let OPT = supx∈C1
f (x). There

is an algorithm ALG(R, r,SO1,SO2) that, in time poly(n, log R, log 1/r, bit(ξ)), returns y ∈ C1 that
satisfies

f (y) >
(1− 1/n)

α1α2
·OPT.

Proof. If f is a linear function, since we try to get a multiplicative approximation, assume without
loss of generality that f (x) = 〈ξ, x〉 for some ξ with ‖ξ‖2 = 1. We first find an upper bound on
OPT. By (R, r, K)-balancedness of C1, whether f is a linear or (R, r, K)-balanced,

OPT 6 sup
x∈C1

f (x) 6 max(‖x‖2/r, ‖x‖2) 6 R max(1, 1/r) =: OPTmax

We also find a lower bound on OPT. If f is (R, r, K)-balanced,

OPT = sup
x∈C1

f (x) > sup
x∈K∩r·Ball(`n

2 )

f (x) >
r
R

=: OPTmin.

If f is linear, by property (T4) of K, unless OPT = 0 (in which case we can just return 0 as the
optimal solution),

OPT > sup
x∈K∩r·Ball(`n

2 )

〈ξ, x〉 = r · sup
x∈K∩Ball(`n

2 )

〈ξ, x〉 > r · 2−poly(bit(ξ)) =: OPTmin

Finally, we bound the difference between OPTε and OPT for small enough ε > 0. Let x∗ ∈
argmaxx∈C1

〈ξ , x〉. By Lemma 3.10, For any ε ∈ (0, r/poly(n)), there exists y∗ such that y ∈ (C1)
−
ε
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and ‖x∗ − y∗‖2 6 ε · p(n) for a fixed polynomial p(n). Since f is Lipschitz with the constant
max(R, 1),

OPTε := sup
y∈(C1)

−
ε

f (y) > f (y∗) > f (x∗)− ε · p(n) ·max(R, 1) = OPT− ε · p(n) ·max(R, 1).

We apply Proposition 3.6 with C1 ← C1, f ← f , Λ ← OPTmax, R ← R, and
ε ← OPTmin/(2np(n)max(R, 1)). The running time is poly(n, log R, log Λ, log(1/ε)) =
poly(n, log R, log(1/r), bit(ξ)) and we find x ∈ C1 that satisfies

f (x) > α1α2(OPTε − ε) > α1α2

(
OPT− ε · 2p(n)max(R, 1)

)
> α1α2

(
1− 1

n

)
OPT,

which proves the claim.

We also give a multiplicative approximation version of Proposition 3.7.

Proposition 3.12 (Convex Minimization with an Approximate Separation Oracle).
Let K be a tractable cone. Let C1 ⊆ K is a closed, upward-closed, and (R, r, K)-inversed balanced set with
an α1-approximate inverse separation oracle SO1. Let f (x) = 〈ξ, x〉 be a linear function for some ξ ∈ K
(in which case α2 = 1) or an (R, r, K)-balanced, nonnegative, homogeneous, and convex function such

that f6λ
def
= {x : f (x) 6 λ} has an α2-approximate separation oracle SO2 for any λ > 0. Let OPT =

infx∈C1 f (x). There is an algorithm ALG(R, r,SO1,SO2) that, in time poly(n, log R, log 1/r, bit(ξ)),
returns y ∈ C1 that satisfies

f (y) 6 OPT · α1α2(1 + 1/n).

Proof. We first prove upper and lower bounds on OPT. When f is (R, r, K)-balanced, since C1 is
also (R, r, K)-inversed balanced, OPT ∈ [r2, R2].

Now we consider linear f (x) = 〈ξ, x〉. Assume without loss of generality that ‖ξ‖2 = 1. The
inverse (R, r, K)-balancedness of C1 implies

OPT := inf
x∈C1
〈ξ , x〉 = min

x∈C1 :‖x‖∈[r,R]
〈ξ , x〉.

If the optimum is 0, there exists x ∈ K such that 〈x, ξ〉 = 0. Such x can be found by property (T2)
of K, and Rx/‖x‖2 ∈ C1 is also an optimal solution. Otherwise, the property (T3) of K implies that

OPT > min
x∈K:‖x‖2=r

〈ξ , x〉 > δ = 2−poly(bit(ξ)) · r.

For an upper bound, since C1 contains a vector of length R, the optimum is also upper bounded
by R.

Let OPTmin = min(2−poly(bit(ξ)) · r, r2),OPTmax := max(R, R2) be the lower and upper bound
on OPT whether OPT is linear or (R, r, k)-balanced.

Finally, we bound the difference between OPTε and OPT for small enough ε > 0. For any
x∗ ∈ argminx∈C1

f (x) and ε ∈ (0, R/4), the property (T5) of K and the fact that C1 is upward-
closed imply that there exists y∗ such that y∗ + ε · Ball(`n

2) ∈ C1 and ‖x∗ − y∗‖2 6 ε · p(n) for a
fixed polynomial p(n). Furthermore, both x∗ and y∗ have `2 norm at most R + 2ε < 1.5R. Since f
is Lipschitz with the constant max(R, 1),

OPTε := min
y∈(C1∩2R·Ball(`n

2 ))
−
ε

f (y) 6 f (y∗) 6 f (x∗) + ε · p(n) ·max(R, 1).
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We apply Proposition 3.7 with with C1 ← C1, f (x) ← f (x), Λ ← OPTmax, R ← 2R, and
ε ← OPTmin

2n·p(n)·max(R,1) . The running time is poly(n, log R, log Λ, log(1/ε)) = poly(n, bit(ξ), log R,
log(1/r)) and we find x that satisfies

f (x) 6 α1α2(OPTε + ε) 6 α1α2(OPT+ ε · p(n) + ε) 6 α1α2(1 + 1/n)OPT,

which proves the claim.

3.2 Duality of Approximation Algorithms for Linear Function Optimization

Systematic use of duality is fundamental in the metric theory of tensor products. Since we are in-
terested in approximation algorithms for the injective tensor norm (read. bilinear maximization),
we end up making extensive use of algorithmic versions of duality. Such results however, can
fail drastically in the approximate optimization setting [SV15]. Nevertheless we show that in the
special case of optimization over downward/upward-closed subsets of a self-dual cone, certain
approximate algorithmic duality statements hold true.

We establish in this subsection a partial converse of Proposition 3.11 and Proposi-
tion 3.12, proving that an approximate linear function maximization algorithm for some
downward/upward-closed convex subset B of a self-dual cone K, leads to an approximate sepa-
ration oracle for B. In particular, we are interested in when K is Rn, the nonnegative orthant, or
the positive semidefinite cone.

We first observe that maximization over B ⊆ K leads to separation for the polar of B. Here,
two kinds of polars are covered — regular polars 2.3 when the underlying set K is Rn, or conic
polars 2.5 when the underlying set is a self-dual cone K.

Observation 3.13 (Maximization Oracle implies Polar Separation Oracle).
Let K ⊆ Rn be a tractable cone or Rn itself. Let B ⊆ K be a closed convex body and let O be an oracle that
takes a vector y ∈ K as input and returns a β-approximately optimal solution to supx∈B〈y , x〉. Then there
is an oracle polytime β-approximate separation oracle SO for B◦K.

Proof. For an input vector ξ ∈ Rn, if ξ /∈ K, we use property (T1) of tractability to output a
hyperplane (exactly) separating ξ and B◦K ⊆ K. For ξ ∈ K, the description of SO is as follows: if
〈O(ξ) , ξ〉 6 1 return “Inside” else return {y | 〈O(ξ) , y〉 = 1} as the hyperplane separating ξ from
B◦K.

Indeed if O returns x such that 〈x , ξ〉 6 1, it is valid to return “Inside” since supx∈B〈x , ξ〉 6 β
and therefore ξ ∈ β · B◦K. On the other hand if O returns x ∈ B so that 〈x , ξ〉 > 1, we know
supξ∈B◦K〈x , ξ〉 6 1 by definition. Thus {y | 〈x , y〉 = 1} is a hyperplane separating ξ from B◦K.

We now prove a partial converse of Proposition 3.11 for linear maximization over a set with a
(forward) approximate separation oracle.

Theorem 3.14 (Duality of Approximate Linear Maximization). Let K ⊆ Rn be a tractable cone or
Rn itself. Let B ⊆ K be a closed, convex, and (R, r, K)-balanced set. If K = Rn, additionally assume
B is origin-symmetric. Consider any β > 1, and let O be an oracle that y ∈ K as input and returns a
β-approximately optimal solution to supx∈B〈y, x〉. Then

(1) There is an algorithm ALG(R, r,O) that, given ξ ∈ K, returns a (1 + o(1))β-approximately optimal
solution to supx∈B◦K〈ξ , x〉 in time poly(n, bit(ξ), log R, log(1/r)).
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(2) There is a (1+ o(1))β-separation oracle SO(R, r,O) for B (if K = Rn) or ↓B (if K is a tractable cone)
that, on input ξ, runs in time poly(n, bit(ξ), log R, log(1/r)).

Proof. By Observation 3.13 we have a β-approximate separation oracle for B◦K. We use it to get
a (β + 1/n)-approximation algorithm for computing supx∈B◦K〈ξ , x〉 for any ξ ∈ K. Note that
(R, r, K)-balancedness of B implies (K, 1/r, 1/R)-balancedness of B◦K. We apply Proposition 3.11
(with C1 ← B◦K and f (x) ← 〈ξ, x〉) to have a (β + 1/n)-approximation algorithm for computing
supx∈B◦K〈ξ , x〉 for any ξ ∈ K. so the running time becomes poly(n, log bit(ξ), log R, log(1/r))
instead of polynomially depending on bit(ξ).

Finally we apply Observation 3.13 to B◦K (and use Fact 2.6 for (B◦K)◦K = ↓B if K is a tractable
cone or (B◦K)◦K = B if K = Rn) to obtain the separation oracle claimed in (2).

Now we study a similar phenomenon for minimization using inverse polars (Definition 2.7).
Our goal is to show that when K is a self-dual cone and B ⊆ K is closed, convex, and upward-
closed, an algorithm to approximately minimize a linear function over B implies other oracles. We
first check that multiplicative approximation is well defined. If B satisfies the above condition,
B�c ⊆ K for any c ∈ R, implying that the optimal solution infx∈B〈y , x〉 = −∞ if y /∈ K and
nonnegative if y ∈ K. Therefore, a β-approximate algorithm is well defined for the problem of
computing infx∈B〈y , x〉; output −∞ if y /∈ K and a β-multiplicative approximate solution if y ∈ K.

Observation 3.15 (Minimization Oracle implies Polar Separation Oracle).
Let B be a closed, convex, and upward-closed set contained in a tractable cone K ⊆ Rn. Assume further
that 0 /∈ B. Let O be an oracle that takes a vector ξ ∈ K as input and returns a β-approximately optimal
solution to infx∈B〈ξ , x〉 for some β > 1. Then there is an oracle polytime β-approximate inverse separation
oracle SO for B�.

Proof. For an input vector ξ ∈ Rn, the description of SO is as follows. Since B� ⊆ K, given ξ /∈ K,
it outputs a hyperplane (exactly) separating ξ and K. For ξ ∈ K, the β-approximation algorithm
for infx∈B〈ξ , x〉 returns O(ξ) such that 〈O(ξ) , ξ〉 > OPT/β. If 〈O(ξ) , ξ〉 > 1 return “Inside” else
return {y | 〈O(ξ) , y〉 = 1} as the hyperplane separating ξ from B�.

Indeed ifO returns x such that 〈x , ξ〉 > 1, it is valid to return “Inside” since infx∈B〈x , ξ〉 > 1/β
and therefore ξ ∈ B�/β.

On the other hand if O returns x ∈ B so that 〈x , ξ〉 < 1, we know infξ∈B�〈x , ξ〉 > 1 since by
the Bipolar theorem, (B�)� = B and hence x ∈ (B�)�. Thus {y | 〈x , y〉 = 1} is a hyperplane
separating ξ from B�.

Finally, we prove a partial converse of Proposition 3.12 for linear minimization over a set with
an (inverse) approximate separation oracle.

Theorem 3.16 (Duality of Approximate Linear Minimization). Let B be a closed, convex, and upward-
closed set contained in a tractable cone K ⊆ Rn. Assume that either B or B� is (R, r, K)-inverse balanced.
Consider any β > 1, and let O be an oracle that takes ξ ∈ K as input and returns a β-approximately
optimal solution to infx∈B〈ξ, x〉. Then

(1) There is an algorithm ALG(R, r,O) that, given ξ ∈ K, returns a (1 + o(1))β-approximately optimal
solution to infx∈B�〈ξ, x〉 in time poly(n, bit(ξ), log R, log(1/r)).

(2) There is a (1 + o(1))β-separation oracle SO(R, r,O) for B that, on input ξ, runs in time poly(n,
bit(ξ), log R, log(1/r)).
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Proof. By Observation 3.15 we have a β-approximate separation oracle for B�. We apply Propo-
sition 3.12 (B ← B�, f ← 〈ξ, ·〉). Note that the (R, r, K)-balancedness of B implies that (1)
(1/R)Ball(`n

2) is disjoint from B� and (2) there exists x ∈ B� with ‖x‖2 6 poly(n)/r, and the
above two conditions can replace (poly(n)/r, 1/R, K)-balancedness of B� in the proof of Proposi-
tion 3.12; lower bounding OPT works verbatim as (1/R)Ball(`n

2) ∩ B� = ∅ and upper bounding
OPT just requires one point of x ∈ B� with ‖x‖2 6 poly(n)/r. Therefore, we have a (1 + 1/n)β-
approximation algorithm for computing infx∈B�〈ξ, x〉 in time poly(n, bit(ξ), log R, log(1/r)). Fi-
nally we apply Observation 3.15 to B� (and use the fact that (B�)� = B) to obtain the separation
oracle claimed in (2).

4 A Generic Framework: Algorithms from Covariance Separation Oracles, and
Reductions across Quadratic/Bilinear/PSD Maximization

The main result of this section is a proof of Theorem 1.14 which provides generic framework for
quadratic/bilinear maximization under bounded type-2/dual-cotype-2. We do this by developing
a theory of polynomial time reductions (with multiplicative loss depending only on T̃2(X) or
C̃2(X∗)) between the following five oracles

(O1) Approximate Search Oracle for Quadratic Maximization.

(O2) Approximate Search Oracle for Bilinear Maximization.

(O3) Approximate Search Oracle for Quadratic Maximization of PSD instances.

(SO1) Approximate Separation Oracle for Upper Covariance Body.

(SO2) Approximate Separation Oracle for Lower Covariance Region.

See Fig. 1 for a pictorial depiction of our reductions. While all of our applications in Section 6 and
Section 7 may be proved via our framework theorem some proofs do not require its full power. We
choose to cast all proofs as an appropriate combination of reductions between the above oracles,
which leads to a more distilled and cohesive presentation.

Our framework theorem can be deduced as a consequence of the reductions (O1) →
(O3) , (O2) → (O3) , (O3) → (SO2). The reductions (O1) → (O3) , (O1) → (SO1) , (SO1) →
(O1) will be used in Section 6 to derive closure properties for quadratic maximization under
bounded Type-2. The reductions (O2) → (O3) , (O3) → (O2) will be used in Section 6 to de-
rive closure properties for bilinear maximization under bounded dual Cotype-2. The reduction
(O1) → (SO1) will be used in Section 7 to derive approximation algorithms for quadratic maxi-
mization over special families of norms with bounded Type-2. The reduction (O2)→ (SO2) will
be used in Section 7 to derive approximation algorithms for bilinear maximization over special
families of norms with bounded dual Cotype-2.

All our reductions in this section follow from judicious application of one or more of the fol-
lowing three ingredients:

1. Approximate convex optimization under approximate separation oracles (Proposition 3.6,
Proposition 3.7).

2. Algorithmic-duality/bipolarity for an appropriate downward/upward-closed subset of a
self-dual cone (Theorem 3.14, Theorem 3.16).

3. An appropriate Rounding algorithm based on sampling Gaussians.
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X⊕∞X(·)≥‖ · ‖(X,X) ‖A‖(X,X) = Qmax

X (A)

if A � 0

Qmax
X (·)

α·T2(X)2
≤
← α

Qmax
X (A � 0)

‖ · ‖X,X
Õ(α·C2(X

∗)2)
≤
← α

Qmax
X (A � 0)

Qmax
X (·)

α
≥
→ α·T2(X)2

SOU(X)

Qmax
X (·)

α(1+o(1))
≤
← α
SOU(X) SOL(X )

α·C2(X∗)2
≤
←α

Qmax
X (A � 0)

SOL(X)
α
≥
→ α(1+o(1))

Qmax
X (A � 0)

Figure 1: The figure illustrates algorithmic reductions across Quadratic/Bilinear/PSD maximization and
Upper/Lower Covariance Separation oracles. For brevity we only depict bilinear maximization over
(X, X), however all proofs address bilinear maximization in full generality (i.e., over (X, Y)). The nota-
tion P

β(α)
6
← α

Q denotes that a polytime α-approximation algorithm for task Q implies a polytime β(α)-

approximation algorithm for task P. The subscript of 6 is omitted when the reduction is lossless.

4.1 Approximation Algorithms from Covariance Separation Oracles

In this section we give approximation algorithms for quadratic and PSD-quadratic maximization
over X assuming approximate separation oracles for certain bodies associated to X.

An obstacle to convex programming approaches for quadratic maximization is that for norms
that are not exactly 2-convex, it is unclear how to choose a computable convex relaxation of the
objective. Here we show that simply by abandoning convexity and appealing to the approxi-
mate ellipsoid method one can approximate quadratic maximization over X (conditioned on a
separation oracle for a body associated to X) without any structural assumptions on X like sign-
invariance or 2-convexity. This serves only as the starting point of our approach as designing such
a separation oracle can be a non-trivial task.

4.1.1 Quadratic Maximization via Upper Covariance Separation Oracles

Motivated by Gaussian rounding schemes, we consider the following (not convex but approxi-
mately convex) relaxation of Qmax

X (A):

maximize 〈A , X〉
subject to E

[
‖X1/2g‖2

X
]
6 1

X � 0 (34)

In fact the relaxation is lossless, i.e.,
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Observation 4.1. (34) is equal to Qmax
X (A).

Proof. To show (34) 6 Qmax
X (A), let X be an optimal solution of (34). We have

(34) = 〈A , X〉 = E
[〈

X1/2g , AX1/2g
〉]

6 E [Qmax
X (A) · ‖X1/2g‖2

X] 6 Qmax
X (A). .

The direction (34) > Qmax
X (A) follows from considering the substitution X

def
= xx∗ where x ∈

Ball(X) is an optimal solution to Qmax
X (A).

We show next how applying the approximate ellipsoid method to (34) can provide a condi-
tional approximation algorithm for quadratic maximization.

Proposition 4.2 (Quadratic Maximization Given Separation Oracle for Upper Covariance Body).
There is an algorithm ALG(A, R, r,SO) such that if ‖·‖X is an (R, r)-balanced norm over Rn and SO
is an α-approximate separation oracle for U (X), then on any input A ∈ Mn(R), ALG runs in time
poly(n, log R, log 1/r, bit(A)) and returns a (1 + o(1))α-approximate solution to Qmax

X (A) with proba-
bility 1− 2−Ω(n).

Proof. We use the approximate ellipsoid method (Proposition 3.11 with C1 ← U (X)) to compute a
(1 + o(1))α-approximate solution X to (34). By Observation 4.1, we know E [〈X1/2g , AX1/2g〉] >
(1 − o(1))Qmax

X (A)/α. We define a random variable G def
= 〈X1/2g , AX1/2g〉 − Qmax

X (A) ·
‖X1/2g‖2

X/τ where g ∈ Rn is a vector of independent standard Gaussians and τ = α(1 + ε)
(where ε = o(1) is chosen to decay slower than the hidden o(1) factor above). By a routine appli-
cation of Chebyshev’s inequality (and independent resampling) we conclude that polynomially
many independent samples of g will guarantee that with probability 1− 2−Ω(n), G > 0 for some
sample and therefore X1/2g/‖X1/2g‖X is the desired approximate solution (the argument with all
details is identical to the concentration argument made in the proof of Proposition 4.4, we choose
not to duplicate it here for brevity).

A necessary condition for an α-separation oracle is α-separability. Interestingly, U (X) is pre-
cisely T̃2(X)2-separable (see Section 4.2.4) and from this the connection to type-2 is evident. Un-
fortunately, (as we show in Section 9) bounded type-2 is not sufficient in general. However, in
Section 6 and Section 7 we exhibit several families of norms wherein one can construct approxi-
mate separation oracles for the Gaussian body.

In its present form Proposition 4.2 is not easy to use and in most of our examples it takes
significant work to design C-separation oracles for U (X) with C being a function of T̃2(X). We
show in the next section how for the special class of PSD instances one can obtain an analogue
of Proposition 4.2 assuming only a separation oracle for the lower covariance region. Designing
such separation oracles turns out to be an easier task in many cases.

4.1.2 PSD Quadratic Maximization via Lower Covariance Separation Oracles

Let A = BB∗ where B is an n× n matrix and let X be a norm over Rn. We crucially use the simple
fact that Qmax

X (A) = Opmax
X,X(A) = ‖BB∗‖X→X∗ = ‖B‖2

2→X∗ , which informally speaking, allows us
to convert a search problem over X into a search problem over `n

2 . We consider the following (not
convex but approximately convex) relaxation of ‖B‖2

2→X∗ = Qmax
X (A) :

maximize E
[
‖BW1/2g‖2

X∗
]
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subject to Tr(W) 6 1
W ∈ PSDn (35)

In fact the relaxation is lossless, i.e.,

Observation 4.3. (35) is equal to ‖B‖2
2→X∗ = Qmax

X (A).

Proof. Let W be the optimal solution of (35).

E [‖BW1/2g‖2
X∗ ] 6 E [‖B‖2

2→X∗ · ‖W1/2g‖2
2] = ‖B‖2

2→X∗ · Tr(W) 6 ‖B‖2
2→X∗

which implies one direction of the claim.

The other direction follows from considering the substitution W
def
= ww∗ where w ∈ Ball(`n

2)
is an optimizer of ‖Bw‖X∗ .

We show next how applying the approximate ellipsoid method to (35) can provide an ap-
proximation algorithm for PSD quadratic maximization with a weaker assumption than Proposi-
tion 4.2.

Proposition 4.4 (PSD Maximization Given Lower Covariance Separation Oracle).
There is an algorithm ALG(A, R, r,SO) such that if ‖·‖X is an (R, r)-balanced norm over Rn and SO
is an α-approximate separation oracle for L(X), then on any input A ∈ PSDn, ALG runs in time
poly(n, log R, log 1/r, bit(A)) and returns a (1 + o(1))α-approximate solution to Qmax

X (A) with proba-
bility 1− 2−Ω(n).

Proof. Without loss of generality we may assume A is invertible otherwise we may add a small
enough multiple of the identity without changing the objective value much (and therefore any
n × n matrix B is invertible if it satisfies A = BB∗). By Observation 4.3, to estimate Qmax

X (A), it
suffices to approximately compute (35). By Proposition 3.11 with C1 ← Ball(`n

2) and f (W) ←
E
[
‖BW1/2g‖2

X∗
]
, it suffices to give for every λ > 0, an α-approximate separation oracle for the set

Sλ
def
=
{

W � 0 | E
[
‖BW1/2g‖2

X∗
]
> λ

}
= {W | λ−1 · BWB∗ ∈ L(X)} .

Since Sλ is a linear transformation of L(X), it is straightforward to check that SO can be adapted
to provide an α-approximate separation oracle for Sλ. Indeed consider any W ∈ Mn(R) and run
SO(λ−1 · BWB∗). If “Inside” is returned, we know W ∈ α · Sλ and therefore can return “Inside”.
On the other hand if SO returns M separating L(X) from λ−1 · BWB∗ then λ−1 · B∗MB separates
Sλ from W and thus we obtain an α-approximate separation oracle for Sλ.

Our rounding algorithm proceeds by first obtaining w.h.p. a vector g ∈ Ball(`n
2) such that

‖Bg‖2
X∗ > (1− o(1)) · ‖B‖2

2→X∗/α. Then the desired solution is any vector ξ ∈ Ball(X) satisfying
〈ξ , Bg〉 = ‖Bg‖X∗ (which can be found using standard convex optimization). This is because

〈A , ξξ∗〉 = ‖B∗ξ‖2
2 > 〈ξ , Bg〉2 = ‖Bg‖2

X∗ > (1− o(1))
‖B‖2

2→X∗

α
= (1− o(1))

Qmax
X (A)

α
.

Let W be a α/(1 − 1/n)-approximately optimal solution to (35). We define a random variable

G def
= ‖BW1/2g‖2

X∗ − ‖B‖2
2→X∗ · ‖W1/2g‖2

2/τ where g is an i.i.d. standard Gaussian vector and
τ > α is a parameter to be chosen later. Note that by assumption on W,

1− 1/n
α

· ‖B‖2
2→X∗ 6 E [‖BW1/2g‖2

X∗ ] 6 E [‖B‖2
2→X∗ · ‖W1/2g‖2

2] 6 ‖B‖2
2→X∗
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⇒ E [G]/‖B‖2
2→X∗ ∈ [(1− 1/n)/α− 1/τ, 1] (36)

For i ∈ [t] let Gi
def
= ‖BW1/2gi‖2

X∗ −‖B‖2
2→X∗ · ‖W1/2gi‖2

2/τ be i.i.d. copies of G where t = n3C

for some constant C > 1 and each gi ∈ Rn is a vector of independent standard Gaussians. We

set g def
= W1/2gj/‖W1/2gj‖2 for any maximizer Gj = maxi∈[t] Gi. We argue that g is the desired

vector w.h.p. through a routine application of Chebyshev’s inequality. We start with a bound on
the variance:

Var
[
∑i∈[t] Gi

]

= t ·Var [G]

6 t ·E [G2]

6 t ·
(

E [‖BW1/2g‖4
X∗ ] + E [‖B‖4

2→X∗‖W1/2g‖4
2/τ2]

)

6 C′ · t ·
(

E [‖BW1/2g‖2
X∗ ]

2 + E [‖B‖2
2→X∗‖W1/2g‖2

2/τ]2
)

(Khintchine-Kahane Theorem 2.1)

(where C′ is an absolute const.)

6 C′((1− 1/n)/α− 1/τ) · t ·E [G]2 (by (36))

By Chebyshev’s inequality, with probability at least 1− 1/k2 it holds that

∑
i∈[t]

Gi > t ·E [G]− k ·
(

C′ · t ·
(

1− 1/n
α

− 1
τ

))1/2

·E [G] .

By averaging, there must exist i ∈ [t] such that

‖BW1/2gi‖2
X∗

‖W1/2gi‖2
2

> E [G] ·
(

1−O
(

k√
t

(
1− 1/n

α
− 1

τ

)))
.

Setting k def
= t0.49 and τ

def
= (1+ t−0.001)α, we obtain that with probability at least 1− n−C there exists

i ∈ [t] such that Gi > E [G](1−O(t−0.009)) > 0. Thus ‖BW1/2gi‖2
X∗/‖W1/2gi‖2

2 > ‖B‖2
2→X∗/τ as

desired. We obtain success probability 1− 2−Ω(n) by repeating the above process independently
for polynomially many rounds. This completes the proof.

Recall a necessary condition for an α-separation oracle is α-separability. Interestingly, L(X)
is precisely C̃2(X∗)2-separable (see Section 4.2.5) and from this the connection to dual cotype-2
is evident. It turns out that in many cases separation oracles are easier to design for L(X) than
U (X). In Section 6 and Section 7 we explore several situations wherein one can construct such
approximate separation oracles.

One of our main technical contributions is using factorization theory to show that quadratic
maximization under bounded type-2 (and bilinear maximization under bounded dual cotype-2)
reduces (algorithmically) to solving a series of PSD maximization instances. This leads us to sev-
eral new results for quadratic and bilinear maximization. We now proceed to exhibit the claimed
reductions.

4.2 Reductions Across Quadratic/Bilinear/PSD Maximization

In this section we explore in depth polynomial time reductions (with multiplicative loss depend-
ing only on T̃2(X) or C̃2(X∗)) between the following three oracles
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(O1) Approximate Search Oracle for Quadratic Maximization.

(O2) Approximate Search Oracle for Bilinear Maximization.

(O3) Approximate Search Oracle for Quadratic Maximization of PSD instances.

The reductions from quadratic/bilinear maximization to PSD maximization, as we will see in
Section 5, are closely related to the theory of factorization of linear operators through `2.

4.2.1 Reducing Quadratic to PSD under Bounded Type-2

In this section we show how a C-approximate search algorithm for quadratic maximization of
PSD instances over X can be used to give a (1 + o(1)) · C · T̃2(X)2-approximation algorithm for
quadratic maximization of general instances. Our approach is as follows:

1. We will use the PSD oracle and algorithmic-duality for downward-closed sets (Theo-
rem 3.14) to construct a separation oracle for ↓BSym

∧ (X).

2. This allows us to approximately solve the following (not exactly computable) vector relax-
ation of Qmax

X (A):

max{〈A , X〉 | X ∈ ↓BSym
∧ (X)} . (37)

3. Finally we use Gaussian rounding to show that (37) 6 T̃2(X)2 ·Qmax
X (A).

We proceed with the proof.

Theorem 4.5 (Type-2 Quadratic Maximization Reduces to PSD Quadratic Maximization).
There is an algorithm ALG(A, R, r,O) such that if ‖·‖X is an (R, r)-balanced norm over Rn and O is an
α-approximate search oracle for PSD quadratic maximization over X, then on any input A ∈ Mn(R), ALG
runs in time poly(n, log R, log 1/r, bit(A)) and returns a (1 + o(1)) · α · T̃2(X)2-approximate solution
to Qmax

X (A) with probability at least 1− 2Ω(n).

Proof. By Proposition 4.2 it suffices to exhibit an approximate separation oracle for U (X).
To this end, note that O is an oracle returning an α-approximate solution to Qmax

X (W) =
sup

X∈↓BSym
∧ (X)

〈W , X〉 for any W ∈ PSDn. Therefore we may apply Theorem 3.14 to the set

↓BSym
∧ (X) with K def

= PSDn to obtain a (1 + o(1))α-approximate separation oracle for ↓BSym
∧ (X).

(The balancedness of ↓BSym
∧ (X) from Lemma 2.24.)

Lastly Observation 3.4 yields the desired (1 + o(1)) · α · T̃2(X)2-approximate separation ora-
cle for U (X) since by Observation 2.17 we have the equivalence T̃2(X)−2 · ↓BSym

∧ (X) ⊆ U (X) ⊆
↓BSym
∧ (X).

Remark 4.6. We make two technical remarks that are required for application of this theorem to algorithmic
closure properties for complex interpolation. Note that the proof above can be adapted verbatim for the
following additional features:

1. We may take ‖·‖X to be a norm over Cn and input A ∈ Mn(C).
2. We may replace the PSD maximization search oracleO with a slightly weaker oracleO′ that on input

W � 0, returns a witness Z ∈ Ball(X⊗̂X) satisfying 〈W , Z〉 > Qmax
X (W)/C. Such an oracle is

weaker as Z can be a convex combination of rank-1 matrices of the form xy∗ (where x, y ∈ Ball(X))
instead of a single such rank-1 matrix.
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4.2.2 Reducing Bilinear to PSD under Bounded Dual Cotype-2

In this section we show how a C-approximate search algorithm for quadratic maximization over
PSD instances can be used to give a C′ = C′(C, C̃2(X∗), C̃2(Y∗))-approximation algorithm for
bilinear maximization over X, Y (i.e., Opmax

X,Y(·)). Our approach is as follows:

1. We will use the PSD oracles and algorithmic-duality for downward-closed sets (Theo-
rem 3.14) to construct separation oracles for ↓BSym

∧ (X), ↓BSym
∧ (Y).

2. This allows us to approximately solve the following (not exactly computable) convex relax-
ation Rlx(A) of Opmax

X,Y(A):

Rlx(A) = max 〈A , Z〉
s.t. X ∈ ↓BSym

∧ (X) , Y ∈ ↓BSym
∧ (Y)

[
X Z
Z∗ Y

]
� 0 . (38)

3. Finally we need a rounding algorithm taking an optimal solution of Rlx(A) and producing
a good solution to Opmax

X,Y(A). A deep factorization theorem of Pisier [Pis80] states that

‖A‖Y→X∗ 6 inf
BC=A

‖C‖Y→2 · ‖B‖2→X∗ 6 C′ · ‖A‖Y→X∗ .

Pisier’s proof can be viewed as having two components. The first component is a bound on
the intergrality gap of Rlx(A):

Opmax
X,Y(A) 6 Rlx(A) 6 C′ ·Opmax

X,Y(A) . (39)

Pisier’s proof of (39) is non-constructive and does not furnish a rounding algorithm for bi-
linear maximization. We give such a rounding algorithm below.

The second component of the factorization theorem is a dual characterization of Rlx(A)
as a factorization norm that follows from a duality result of Maurey, i.e., Rlx(A) =
infBC=A‖C‖Y→2 · ‖B‖2→X∗ . We refer the reader to Section 5 for a detailed discussion of fac-
torization theory and the results of Maurey and Pisier.

Pisier’s proof exhibits a (randomized) non-constructive map from any pair of sequences
(yi), (yi) to a unit vector y ∈ Ball(Y) such that E[‖Ay‖X∗ ] is bounded from below by
(∑i ‖A yi‖2

X∗/ ∑j ‖yj‖2
Y)/C′. The analysis of our rounding algorithm borrows heavily from Pisier’s

proof as we utilize his non-constructive map as a witness of our rounded vector having high ex-
pected value.

We proceed with collecting the necessary components of our proof. We require the following
fourier analytic decomposition result that is a critical component of Pisier’s factorization theorem.

Lemma 4.7 (Pisier [Pis86]). Let g1, . . . , gm ∼ N (0, 1) be i.i.d. standard Gaussians and let ε1, . . . , εm be
i.i.d. rademacher (±1) random variables. If ∑i∈[m] yiy∗i ∈ BSym

∧ (Y), then for any 0 < δ < 1 there exists a
vector valued function ϕ : Rn × {±1}n 7→ Rn such that

E
g,ε

[
‖∑i ε igiyi + ϕ(g, ε)‖2

Y
]1/2

= O(C̃2(Y∗) log 1/δ)

E
g,ε

[
‖Aϕ(g, ε)‖2

X∗
]1/2

6 δ · Rlx(A) for any A ∈ Mn,m(R) .
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We will also need the following simple fact about scalar valued random variables.

Fact 4.8. Fix α , ε > 0 and β > 1. Let x be a random variable supported in the interval [−∞, α] and let
E[x] > α/β. Then

P

[
x <

α

(1 + ε)β

]
6

(1 + ε)(β− 1)
β(1 + ε)− 1

= 1− ε

β + εβ− 1
.

Proof. If the statement is false,

E[x] <
(1 + ε)(β− 1)
β(1 + ε)− 1

· α

(1 + ε)β
+

(
1− (1 + ε)(β− 1)

β(1 + ε)− 1

)
α = α/β,

leading to contradiction.

Finally we need the following simple claim about factorization of a 2× 2 positive definite block
matrix.

Claim 4.9. Consider any invertible matrix
[

X Z
Z∗ Y

]
∈ PSDn+m and fix any factorization X = SS∗ where

S ∈ Mn,s(R). Then there exists T ∈ Mm,s(R) such that Z = ST∗ and Y � TT∗.

Proof. By assumption there exist matrices U ∈ Mn,n+m(R) and V ∈ Mm,n+m(R) such that X =

UU∗, Y = VV∗ and Z = UV∗. Let S† def
= S∗(SS∗)−1 = S∗X−1 denote the moore-penrose pseudo-

inverse of S (recall S† satisfies the property SS† = I). Let T def
= VU∗(S†)∗. Then we have ST∗ =

SS†UV∗ = UV∗ = Z.
It remains to verify Y � TT∗. To this end note that by definition of pseudo-inverse one has

(S†)∗S† = (S†)∗S∗X−1 = X−1 . (40)

Let H def
= U†U = U∗X−1U = H∗. Then H2 = U∗X−1UU∗X−1U = U∗X−1U = H. Thus H is a

symmetric orthogonal projector. Now we have

TT∗ = VU∗(S†)∗S†UV∗ = VU∗X−1UV∗ = V∗HV � V∗V = Y

where the second equality uses (40), and the (PSD) inequality uses the fact that H is an orthogonal
projector. This completes the proof.

We are now ready to prove the main result of this subsection.

Theorem 4.10 (Bilinear Maximization Reduces to PSD Quadratic Maximization).
There is an algorithm ALG(A, R, r,OX,OY) such that if ‖·‖X (resp. ‖·‖Y) is an (R, r)-balanced norm
over Rn (resp. Rm) and OX (resp. OY) is an α-approximate search oracle for PSD quadratic maximization
over X (resp. Y), then on any input A ∈ Mn,m(R), ALG runs in time poly(n, m, log R, log 1/r, bit(A))
and returns an αβ log αβ-approximate solution to Opmax

X,Y(A) with probability 1 − 2−Ω(n), where β .
C2(X∗)C2(Y∗).

Proof. Just as in the proof of Theorem 4.5 we obtain (1 + o(1)) · α-separation oracles for
↓BSym
∧ (X), ↓BSym

∧ (Y). Therefore by Proposition 3.11 we can compute a (1 + o(1))α-approximate
solution (X, Y, Z) to (38) and apply the following rounding algorithm:
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1. Let Y be a (1 + o(1))α-approximate solution to (38) and fix any decomposition Y =

∑i∈[m] yiy∗i .

2. Let g1, . . . , gm ∼ N (0, 1) be i.i.d. standard Gaussians and let ε1, . . . , εm be i.i.d. rademacher
(±1) random variables. Using the exact membership oracle of X (and standard convex opti-
mization), compute xg ∈ Ball(X) satisfying 〈xg , ∑i ε igi Ayi〉 = ‖∑i ε igi Ayi‖X∗ .

3. Using the exact membership oracle of Y (and convex optimization), compute yg ∈ Ball(Y)
satisfying 〈A∗xg , yg〉 = ‖A∗xg‖Y∗ .

4. Output xg, yg.

We now analyze the rounding algorithm. Since ∧↓Sym
X (X) 6 1, by definition there exists X′ � X

and a finite sequence (xi) such that X′ = ∑i xix∗i and ∑i ‖xi‖2
X 6 1. Since X′ � X, we have

[
X′ Z
Z∗ Y

]
� 0 .

Without loss of generality we assume
[

X′ Z
Z∗ Y

]
is invertible since otherwise we may add a suffi-

ciently small copy of the identity matrix which affects estimates by only lower order terms. Then
by Claim 4.9, there exists a sequence (yi) such that Z = ∑i xiy∗i and Y � ∑i yiy

∗
i . We have

(1− o(1)) · Rlx(A)/α

6 〈A , Z〉
= ∑

i
〈xi , Ayi〉

6
(

∑i ‖xi‖2
X
)1/2(

∑i ‖Ayi‖2
X∗
)1/2 (by Hölder + Cauchy-Schwarz)

6
(

∑i ‖Ayi‖2
X∗
)1/2 (by definition of (xi))

6 C̃2(X∗) ·E
g

[
‖∑i gi Ayi‖2

X∗
]1/2 (by definition of cotype-2)

6 C̃2(X∗) ·E
g

[
‖∑i gi Ayi‖2

X∗
]1/2 (monotonicity - Fact 2.16) (41)

(since ∑
i
(Ayi)(Ayi)

∗ = AYA∗ �∑
i
(Ayi)(Ayi)

∗) .

We are now equipped to relate γ2(A) to the expected value of the rounding algorithm. By (41), we
have

(1− o(1)) · Rlx(A)/(α · C̃2(X∗))

6 E
g

[
‖∑i gi Ayi‖2

X∗
]1/2

. E
g
[‖∑i gi Ayi‖X∗ ] (Kahane-Khintchine)

= E
g,ε

[‖∑i ε igi Ayi‖X∗ ] (identical distributions)

= E
g,ε

[〈xg , ∑i ε igi Ayi〉]

= E
g,ε

[〈A∗xg , ∑i ε igiyi〉]

6 E
g,ε

[ |〈A∗xg , ∑i ε igiyi + ϕ(g, ε)〉| ] + Eg,ε [ |〈A∗xg , ϕ(g, ε)〉| ] (by triangle inequality)
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6 E
g,ε

[ |〈A∗xg , ∑i ε igiyi + ϕ(g, ε)〉| ] + Eg,ε
[
〈A∗xg , ϕ(g, ε)〉2

]1/2 (by Jensen’s inequality)

(where ϕ is chosen according to Lemma 4.7)

6 E
g,ε

[‖A∗xg‖Y · ‖∑i ε igiyi + ϕ(g, ε)‖Y∗ ] + Eg,ε
[
‖Aϕ(g, ε)‖2

X∗
]1/2 (Holder’s, xg ∈ Ball(X))

6 E
g,ε

[‖A∗xg‖Y · ‖∑i ε igiyi + ϕ(g, ε)‖Y∗ ] + δ · Rlx(A) (Lemma 4.7)

6 E
g,ε

[
‖A∗xg‖2

Y
]1/2 · E

g,ε

[
‖∑i ε igiyi + ϕ(g, ε)‖2

Y∗
]1/2

+ δ · Rlx(A) (Cauchy-Schwarz)

. E
g,ε

[
‖A∗xg‖2

Y
]1/2 · C̃2(Y∗) · log 1/δ + δ · Rlx(A) (Lemma 4.7)

= E
g,ε

[
〈xg , Ayg〉2

]1/2 · C̃2(Y∗) · log 1/δ + δ · Rlx(A) (definition of y) (42)

Finally setting δ = 1/(Cαβ) for a sufficiently large absolute constant C and rearranging (42) im-
plies that

E
g,ε

[
〈xg , Ayg〉2

]1/2
> γ2(A)/O(αβ log(αβ)) > Opmax

X,Y(A)/O(αβ log(αβ))

Since the random variable 〈xg , Ayg〉2 lies in the interval [0, ‖A‖2
X→Y], we may apply Fact 4.8 to it

and obtain that with probability at least ε/poly(αβ), 〈xg , Ayg〉 > (1− ε)Opmax
X,Y(A)/O(αβ log(αβ)).

Finally, sampling independently for polynomially many rounds and returning the best pair xg, yg
implies the 1− 2−Ω(n) success probability claimed in (2).

4.2.3 A Generic Framework for Quadratic/Bilinear Maximization

We are finally equipped to prove our claimed framework theorem.

Theorem 4.11 (Framework: Maximization under Lower Covariance Oracle).
There are algorithms ALG1(A1, R, r,SOX) and ALG2(A2, R, r,SOX,SOY) such that if ‖·‖X (resp.
‖·‖Y) is an (R, r)-balanced norm over Rn (resp. Rm) and SOX (resp. SOY) is an α-approximate sep-
aration oracle for L(X) (resp. L(Y)) then

- Quadratic: for any A1 ∈ Mn(R), ALG1 runs in time poly(n, log R, log 1/r, bit(A1)) and with
probability at least 1− 2−Ω(n) returns a (1 + o(1)) · α · T2(X)2-approximately optimal solution to
Qmax

X (A1).

- Bilinear: for any A2 ∈ Mn,m(R), ALG2 runs in time poly(n, m, log R, log 1/r, bit(A2)) and
with probability at least 1− 2−Ω(n+m), ALG2 returns a β log β-approximately optimal solution to
Opmax

X,Y(A2) where β . α · C̃2(X∗) · C̃2(Y∗).

Proof. The quadratic (resp. bilinear) claim follows from combining Theorem 4.5 (resp. Theo-
rem 4.10) with Proposition 4.4.

We note the following useful corollary that illustrates the importance of Khintchine-type in-
equalities for quadratic/bilinear maximization.

Corollary 4.12 (Khintchine-Type Inequalities Yield Approximation Algorithms).
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1. There is an algorithm ALG(A, R, r,O f ) such that if ‖·‖X is an (R, r)-balanced norm over Rn and
O f is an exact oracle computing a convex function f : PSDn → R satisfying

α−1
1 · f (X) 6 E

[
‖X1/2g‖2

X
]
6 α2 · f (X) ∀ X ∈ PSDn ,

then on any input A ∈ Mn(R), ALG runs in time poly(n, log R, log 1/r, bit(A)) and returns an
α1α2T̃2(X)2-approximate solution to Qmax

X (A) with probability 1− 2−Ω(n).

2. There are algorithms ALG1(A1, R, r,O f ) and ALG2(A2, R, r,O f ,Og) such that if ‖·‖X (resp.
‖·‖Y) is an (R, r)-balanced norm over Rn (resp. Rm) and O f (resp. Og) is an exact oracle com-
puting a concave function f : PSDn → R (resp. g : PSDm → R) satisfying

α−1
1 · f (W) 6 E

[
‖W1/2g‖2

X∗
]
6 α2 · f (W) ∀W ∈ PSDn

α−1
1 · g(W) 6 E

[
‖W1/2g‖2

Y∗
]
6 α2 · g(W) ∀W ∈ PSDm ,

then
(A) on any input A1 ∈ Mn(R), ALG1 runs in time poly(n, log R, log 1/r, bit(A1)) and returns

an α1α2T̃2(X)2-approximate solution to Qmax
X (A1) with probability 1− 2−Ω(n),

(B) on any input A2 ∈ Mn,m(R), ALG2 runs in time poly(n, m, log R, log 1/r, bit(A2)) and
returns a β log β-approximate solution to Opmax

X,Y(A2) with probability 1 − 2−Ω(n+m), where
β . α1α2C2(X∗)C2(Y∗).

Proof. For claim (1.), we know by Proposition 4.2 that it suffices to give a separation oracle for
U (X). Furthermore, the convex set {X � 0 | f (X) 6 1} has an exact membership oracle and
therefore also a separation oracle. Applying Observation 3.4 yields the desired approximate sep-
aration oracle for U (X).

For claim (2.), we know by Theorem 4.11 that it suffices to give separation oracles for
L(X),L(Y). Furthermore, the convex set {W � 0 | f (W) > 1} has an exact membership oracle
and therefore also a separation oracle. Applying Observation 3.4 yields the desired approximate
separation oracle for L(X) and the case for Y is analogous.

4.2.4 Type-2 Equivalence of Quadratic Maximization/Upper Covariance Separation

Below we establish a converse of Proposition 4.2 and thus obtain an algorithm vs. covariance
separation oracle duality for Type-2 quadratic maximization.

Proposition 4.13 (Quadratic Maximization Algorithm implies Upper Covariance Separation Oracle).
There is an (1+ o(1)) · α · T̃2(X)2-approximate separation oracle for U (X) running in time poly(n, log R,
log 1/r, bit(x)) where x is the input, assuming access to an α-approximate search oracle O for quadratic
maximization over an (R, r)-balanced norm (Rn, ‖·‖X).

Proof. Recall that, by (31), for a PSD matrix A,

Qmax
X (A) = max

W∈BSym
∧ (X)

〈A, W〉 = max
W∈↓BSym

∧ (X)

〈A, W〉.

Therefore, given an α-approximation search oracle for quadratic maximization, Theorem 3.14 with
K ← PSDn, B ← ↓BSym

∧ (X) implies that ↓BSym
∧ (X) has an (1 + o(1))α-approximate separation ora-

cle. (The balancedness of ↓BSym
∧ (X) follows from Lemma 2.24.)

Then the equivalence between ↓BSym
∧ (X) and U (X) up to T̃2(X)2 (Observation 2.17 and Obser-

vation 3.4) gives a ((1 + o(1)) · α · T̃2(X)2)-separation oracle for U (X) as desired.
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4.2.5 Cotype-2 Equivalence of PSD Maximization/Lower Covariance Separation

We next give an analogue of Proposition 4.13 for PSD maximization/lower covariance separation
in the presence of dual cotype-2.

Proposition 4.14 (PSD Maximization Algorithm implies Lower Covariance Separation Oracle).
There is a (1 + o(1)) · α · C̃2(X)2-approximate separation oracle for L(X) running in time poly(n, log R,
log 1/r, bit(x)) where x is the input, assuming access to an α-approximate search oracle O for PSD
quadratic maximization over an (R, r)-balanced norm (Rn, ‖·‖X).

Proof. We will construct an α-approximate search oracle for inf
W∈B ↑∧(X)

〈U∗U , W〉 on any input

U∗U, and apply Theorem 3.16 with B← B ↑∧(X), K ← PSDn to get a (1 + o(1))α-separation oracle
for B ↑∧(X). (The inverse balancedness of B ↑∧(X) follows from Lemma 2.24.) Then the equivalence
between B ↑∧(X) andL(X) up to C̃2(X)2 (Observation 2.20 and Observation 3.4) gives a ((1+ o(1)) ·
α · C̃2(X)2)-separation oracle for L(X) as desired.

Therefore it remains to construct an α-approximate search oracle for inf
W∈B ↑∧(X)

〈U∗U , W〉 on
any input U∗U. To this end observe that

inf
W∈B ↑∧(X)

〈U∗U , W〉 = (‖U‖min
X∗→2)

2 .

We conclude that U is invertible otherwise ‖U‖min
X∗→2 = 0 which contradicts the assumption that

U∗U ∈ B ↑∧(X)�. Let v be any vector satisfying ‖v‖2 6 α1/2/‖U−1‖2→X∗ and ‖U−1v‖X∗ = 1.
Such a vector can be found by using O to obtain u such that ‖u‖2 = 1 and ‖U−1u‖X∗ >

α−1/2 · ‖U−1‖2→X∗ . Then setting v def
= u/‖U−1u‖X∗ satisfies the desired properties. Finally taking

y def
= U−1v satisfies the conditions yy∗ ∈ B ↑∧(X) and

〈U∗U , yy∗〉 = ‖Uy‖2
2 = ‖v‖2

2 6 α · ‖U−1‖−2
2→X∗ = α · (‖U‖min

X∗→2)
2 .

This yields the desired minimization oracle and hence completes our proof.

4.2.6 Reducing PSD to Bilinear under Bounded Dual Cotype-2

Proposition 4.15 (PSD reduces to Bilinear under Finite Cotype).
Let (Rn, ‖·‖Xn)n∈N and (Rn, ‖·‖Yn)n∈N be a sequence of (R, r)-balanced norms satisfying
supn C̃2((Xn)∗), supn C̃2((Yn)∗) < ∞. If there is a family (ALGn,m)n,m∈N of poly(n, m)-time search
algorithms α-approximating Opmax

Xn,Ym(·), then there are families of poly(n)-time search algorithms 4α2-
approximating PSD quadratic maximization over (Xn) and over (Yn) respectively.

Proof. We give an algorithm for PSD quadratic maximization over (Xn) and the the algorithm for
(Yn) is analogous. It is known through a classical result of Figiel Lindenstrauss Milman [FLM77]
that for any n and m & C̃2(Ym)2 · n, there is an m× n matrix B such that for all a ∈ Rn,

1√
2
· ‖a‖`n

2
6 ‖Ba‖(Ym)∗ 6

√
2 · ‖a‖`n

2
. (43)

For any matrix B satisfying (43) any C ∈ Mn(R), we have ‖BC‖Xn→(Ym)∗/
√

2 6 ‖C‖X→`n
2
6√

2‖BC‖Xn→(Ym)∗ .
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Consider any instance A = C∗C ∈ PSDn of PSD quadratic maximization over Xn. Our
algorithm will be run the (Ym, Xn) bilinear maximization algorithm on BC to obtain a vector
x ∈ Ball(Xn) satisfying

‖BCx‖(Ym)∗ > Opmax
Ym,Xn(BC)/α = ‖BC‖Xn→(Ym)∗/α > ‖C‖X→`n

2
/(
√

2α) .

x is the desired solution since we have

〈x , Ax〉 = ‖Cx‖2
`n

2
> ‖BCx‖2

(Ym)∗/2 > ‖C‖2
X→`n

2
/(4α2) = Qmax

X (A)/(4α2)

where the first inequality follows again from (43).

In the next section we discuss how the reductions from quadratic and bilinear maximization to
PSD quadratic maximization may be viewed as dual to (algorithmic) factorization theorems, lead-
ing to a streamlined exposition of Pisier’s abstract factorization theorem (with a new approxima-
tion algorithm to obtain such a factorization), as well as a new factorization theorem for quadratic
forms. These results are not necessary to obtain the applications promised in Section 6 and Sec-
tion 7, and readers only interested in applications of Theorem 4.11 may skip Section 5 and proceed
to Section 6.

5 Factorization through `2 via Gaussian Rounding + Convex Program-
ming Duality

For norms ‖·‖E over Rn, ‖·‖F over Rm and an linear operator A : E → F, we define the factoriza-
tion norm

γ2(A) := inf
BC=A

‖C‖E→2 · ‖B‖2→F . (44)

For any factorization A = BC where C : E → `d
2 and B : `d

2 → F, the distortion of A (i.e., ‖A‖E→F)
is trivially upper bounded by the product of distortions (i.e., ‖C‖E→2 · ‖B‖2→F). Thus γ2(A) can
be thought of as the best upper bound on the distortion of A when it is viewed as a map from
E → `2 and then from `2 → F (there are infinitely many such factorizations). A "factorization
theorem" is an inequality of the form

‖A‖E→F 6 γ2(A) 6 C(E, F) · ‖A‖E→F .4

i.e., the upper bound on distortion prescribed by the best factorization of A approximates the
actual distortion of A. Surprisingly for a wide class of norms, C(E, F) can be taken independent
of the dimension. Factorization theory is a fundamental area of research in Banach space theory
with many applications.

In this section we discuss how the proofs of powerful theorems on factorization through `2
(like those of Grothendieck, Maurey and Pisier) can be viewed as having the following compo-
nents

1. A dual characterization of the factorization norm as a maximization problem (which is a
convex but not necessarily computable relaxation of ‖A‖E→F).

4Note that the first inequality trivially holds for any E, F.
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2. A bound on the “integrality gap” of the maximization problem (i.e., a bound on
supA γ2(A)/‖A‖E→F). Such a bound can be obtained by analyzing an appropriate Gaussian
rounding scheme that maps an optimal solution of the maximization problem to a vector
e ∈ Ball(E), f ∈ Ball(F).

While step (1.) above seems to have been proved using sophisticated Hahn-Banach arguments
previously 5, we show how all of these duality results are special cases of conic Lagrangian du-
ality.6 We then use this perspective to prove factorization theorems for quadratic maximization
which to our knowledge were previously overlooked. En route we also show that the optimal
factorization can be computed approximately, assuming access to an oracle for PSD quadratic
maximization.

We begin with a discussion of sign-invariant norms (lattices) where factorization takes on a
particularly simple form, in order to provide a gentle introduction for a reader encountering these
notions for the first time. Readers familiar with factorization theory may wish to skip ahead to
Section 5.2.

5.1 Warmup: Sign-Invariant Norms

In this section we discuss factorization in sign-invariant norms (lattices) where factorization takes
on a simpler form. We begin by discussing the case of `∞ and the classical results of Grothendieck.

5.1.1 Grothendieck’s Inequality/Factorization as a Motivating Example

Recall for an n×m matrix A,

‖A‖∞→1 = Opmax
∞,∞(A) = sup

|xi |,|yj|61
∑
i,j

Ai,j · xi · yj .

Grothendieck’s inequality states that ‖A‖∞→1 6 SDP(A) 6 KG · ‖A‖∞→1 for an absolute constant
KG

7 where the semidefinite programming relaxation SDP(A) is defined as

maximize ∑
i,j

Ai,j · 〈ui , vj〉 s.t.

subject to ‖ui‖2, ‖vj‖2 6 1 i ∈ [n], j ∈ [m]

u1, . . . , un, v1, . . . vm ∈ Rm+n (45)

and is equivalent to

maximize 〈A , Z〉
subject to Xi,i, Yj,j 6 1 i ∈ [n], j ∈ [m]

[
X Z
Z∗ Y

]
� 0 . (46)

5We make no attempt to study the infinite dimensional case in this work as it takes us too far afield of the discussion
of algorithms.

6also known in the literature as Lagrangian duality of convex programming with generalized inequalities
7We use KG to denote the best such constant.
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Grothendieck [Gro53] observed that the above inequality implies a beautiful factorization result;
namely for any matrix A there exist α ∈ Ball(`n

2), β ∈ Ball(`m
2 ) such that Opmax

∞,∞(A) 6 Opmax
2,2 (Ã) 6

KG ·Opmax
∞,∞(A) where Ã is obtained by reweighting the rows (resp. columns) of A by (1/αi) (resp.

(1/βi)) (Tropp [Tro09] discovered an algorithmic application of such a factorization– specifically
he gave an algorithm for column subset selection by using these reweightings as measures of
importance of the rows/columns of A).

Stated in a way that better motivates the term “factorization”, ‖A‖∞→1 6 γ
Diag
2 (A) 6 KG ·

‖A‖∞→1 where we define the Grothendieck factorization norm as

γ
Diag
2 (A : `m

∞ → `n
1) := inf

D1BD2=A
‖D2‖∞→2 · ‖B‖2→2 · ‖D1‖2→1

where the infimum runs over n×m matrices B and diagonal matrices D1, D2. Note that the first
inequality above is simply a consequence of sub-multiplicativity of the operator norm under com-
position (‖BC‖Z→X 6 ‖C‖Z→Y · ‖B‖Y→X). Pietsch observed that Grothendieck’s constant is tight
for this factorization result by showing the equality γ

Diag
2 (A) = SDP(A) using an abstract Hahn-

Banach argument (see for e.g. Corollary 23.3 in [Pis12] for an exposition) which in this case in-
volves separation arguments on subsets of RRn

. Tropp [Tro09] proved this equality by observing
that the dual semidefinite program of (46) which is given by

inf (‖t‖1 + ‖s‖1)/2 s.t.
[

Diag(s) −A
−A∗ Diag(t)

]
� 0 s ∈ Rn, t ∈ Rm (47)

can be easily massaged into the form of γ
Diag
2 (A). Thus by now Grothendick’s factorization theo-

rem admits a proof involving only objects of routine occurrence in the optimization literature.

5.1.2 Generalizations to 2-Convex Norms.

Krivine [Kri73] observed that Grothendieck’s inequality/factorization generalizes to a wide class
of normed spaces called 2-convex Banach Lattices. For simplicity we specialize the discussion
from lattices to the class of sign-invariant norms over Rn (i.e., norms invariant to flipping signs of
the entries) as this class is rich enough to demonstrate the ideas we aim to communicate.

Before stating the factorization theorem, we require a definition. In what follows, for a scalar
function s : R → R and a vector x ∈ Rn, we use the notation s(x) to denote the vector obtained
by entry-wise application of s to x, i.e., s(x) = (s(x1), . . . , s(xn)). For e.g., |x|p denotes the vector
(|x1|p, . . . |xn|p). This notation appears exclusively in Section 7.1.1 and Section 5.1.

Definition 5.1 (2-convexity). Let X be a sign-invariant norm over Rn. Then the 2-convexity constant of
X, denoted by M(2)(X), is the smallest constant C such that for every finite sequence of vectors (xi) in X,

∥∥∥
(

∑i |xi|2
)1/2

∥∥∥
X
6 C ·

(
∑i ‖xi‖2

X
)1/2

where | · |2 and (·)1/2 are applied to a vector entry-wise in the left hand expression above. We will say X is
exactly 2-convex if M(2)(X) = 1.

Theorem 5.2 (Krivine/Grothendieck Factorization Theorem).
For sign-invariant norms X over Rn and Y over Rm such that X∗ and Y are exactly 2-convex and any
operator A : Y → X, it holds that

‖A‖Y→X 6 γ
Diag
2 (A) 6 KG ·M(2)(X∗) ·M(2)(Y) · ‖A‖Y→X
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where KG is Grothendieck’s constant and

γ
Diag
2 (A : Y → X) := inf

D1BD2=A
‖D2‖Y→2 · ‖B‖2→2 · ‖D1‖2→X

where the infimum runs over diagonal matrices D1, D2.
Combining this with the known equivalence of 2-convexity and dual cotype-2 (see for e.g. [Pis86]) for
Banach lattices yields

γ
Diag
2 (A) 6 O(C̃2(X)C̃2(Y∗) log C̃2(X) log C̃2(Y∗)) · ‖A‖Y→X .

Here again a proof by Lagrangian duality is available (assuming Grothendick’s inequality as
a blackbox). Indeed Nesterov [Nes98] independently reproved Grothendieck’s inequality (and
Krivine’s 2-convex extension) in 1997. In this case one compares the objective Opmax

X,Y(A) to

maximize ∑
i,j

Ai,j · 〈ui , vj〉 s.t.

subject to
∥∥(‖u1‖2, . . . , ‖un‖2)

∥∥2
X 6 1

∥∥(‖v1‖2, . . . , ‖vm‖2)
∥∥2

Y 6 1

u1, . . . , un, v1, . . . vm ∈ Rm+n (48)

where the above program is convex precisely when X, Y are exactly 2-convex. Without explicitly
noting the connection to factorization theory, Nesterov computed the Lagrangian dual of (48) to
be

inf (Opmax
X,X(Diag(s)) + Opmax

Y,Y(Diag(t)))/2 s.t.
[

Diag(s) −A
−A∗ Diag(t)

]
� 0 s ∈ Rn, t ∈ Rm . (49)

(49) is readily massaged into the form of γ
Diag
2 (A) (see lemma A.7. in [BGG+19] for a proof).

Simply applying the approximate ellipsoid method to (49) yields a previously overlooked but
somewhat surprising result which states that in the case of sign-invariant norms whose duals have
bounded cotype-2 constant, diagonal instances are the bottleneck for bilinear maximization:

Proposition 5.3 (Algorithm for Cotype-2 Lattice Duals assuming Oracle for Diagonal Instances).
There is an algorithm ALG(A,OX,OY) running in time poly(n, log R, log 1/r, bit(A)) that on any input
A ∈ Mn,m(R) returns a C-approximation to Opmax

X,Y(·) assuming access to an α-approximate search oracle
OX (resp. OY) for quadratic maximization of diagonal instances over X (resp. over Y), where

C def
= α KG M(2)(X)M(2)(Y) = O(α · C2(X∗) log C2(X∗) · C2(Y∗) log C2(Y∗)) .

Proof. Using the diagonal-instance oracles, we will exhibit α-approximate separation oracles for
the sets

SX
def
= {s ∈ Rn | s > 0, Opmax

X,X(Diag(s)) 6 1} , SY
def
= {t ∈ Rm | t > 0, Opmax

Y,Y(Diag(t)) 6 1} .

Then Proposition 3.12 with

C1 ←
{
(s, t) :

[
Diag(s) −A
−A∗ Diag(t)

]
� 0

}
and f (s, t)← (Opmax

X,X(Diag(s)) + Opmax
Y,Y(Diag(t)))/2
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implies that we can compute an (1 + o(1))α-approximation to (49), which by Theorem 5.2 implies
the desired approximation to Opmax

X,Y(·).
Now we construct α-approximate separation oracles for SX and SY. We will construct an oracle

for SX and the case of SY will be analogous. To this end consider any s ∈ Rn. Let D be the matrix
containing s in the diagonal, and let x be the output of OX(D). If 〈D , xx∗〉 6 1 we return “Inside”
and if 〈D , xx∗〉 > 1 we return {y | 〈y , x〉2 = 1} as a hyperplane separating s from SX. Indeed since
x ∈ Ball(X), we have 〈y , x〉2 6 1 for any y ∈ SX. Lastly since 〈D , xx∗〉 6 Opmax

X,X(D) 6 α · 〈D , xx∗〉,
it is easily checked that the above scheme satisfies all conditions of an α-approximate separation
oracle for SX.

It turns out that factorization results with weaker structure (i.e., factorization through `2) are
available for much more general classes of norms (i.e., without any sign-invariance assumptions
like in the case of Grothendieck’s factorization). We discuss such factorization results in the next
section.

5.2 Factorization Through `2 without Lattice Assumptions

For norms X over Rn, Y over Rm and an operator A : Y → X, we define the factorization norm

γ2(A) := inf
BC=A

‖C‖Y→2 · ‖B‖2→X . (50)

Maurey [Mau74] (extending a result of Kwapien) proved a powerful factorization result

Theorem 5.4 (Maurey Factorization Theorem).

‖A‖Y→X 6 γ2(A) 6 T2(Y) · C2(X) · ‖A‖Y→X .

However in light of Grothendieck’s factorization theorem for A : `m
∞ → `n

1 , one expects
a dependence on C̃2(Y∗) instead of T̃2(Y) above. An important result of Pisier [Pis80] bridges
Grothendieck’s and Maurey’s factorization theorems:

Theorem 5.5 (Pisier’s Factorization Theorem).

‖A‖Y→X 6 γ2(A) 6 O(C2(X∗)C2(Y) log C2(X∗) log C2(Y)) · ‖A‖X→Y .

Previously constant factor approximation algorithms for bilinear maximization were known
only for norms admitting an analogue of Grothendieck’s inequality; this is the case for exactly
2-convex norms which simply extend the classical Grothendieck inequality and this is also the
case for Schatten-∞ (max singular value) where Naor, Regev, and Vidick [NRV13] algorithmicised
Haagerup’s proof of the celebrated non-commutative Grothendieck inequality. Curiously, both
the classical and non-commutative Grothendieck inequalities are equivalent to results about “fac-
torization through `2” wherein the factorization satisfies additional structural properties.

We obtain constant factor approximation algorithms for a broader class of norms by utilizing
Pisier’s factorization theorem which applies to a much more general class of norms than those
for which Grothendieck-type inequalities are available. This demonstrates that for the purpose of
algorithm design, the factorizations need not have additional structure.

We next show how γ2(·) can be cast as a convex program. We then apply conic Lagrangian
duality to this formulation to show that the best constant in a factorization theorem is equal to the
integrality gap of an appropriate convex relaxation of ‖A‖E→F.
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5.2.1 Convex Programming Formulation of γ2(·)

In this section, we show that γ2(·) can be written as a convex program. As an additional bene-
fit, we can use the approximate ellipsoid method to show that the optimal factorization can be
approximately computed using an oracle for quadratic maximization of PSD instances.
Let A be an n×m matrix. We will show that the following convex program is a reformulation of
γ2(A : Y → X∗):

inf (Qmax
X (W1) + Qmax

Y (W2))/2 s.t.
[

W1 −A
−A∗ W2

]
� 0 W1 ∈ Mn(R), W2 ∈ Mm(R) (51)

which can be equivalently written as

inf (‖U‖2
Y→2 + ‖V∗‖2

2→X∗)/2 s.t.
[

UU∗ −A
−A∗ VV∗

]
� 0 U ∈ Mn(R), V ∈ Mm(R) . (52)

Lemma 5.6. γ2(A : Y → X∗) = (52).

Proof. We begin with the observation that

inf
BEC=A

‖C‖Y→2 · ‖E‖2→2 · ‖B‖2→X∗ = inf
BC=A

‖C‖Y→2 · ‖B‖2→X∗

where LHS > RHS follows since ‖EC‖Y→2 6 ‖C‖Y→2 · ‖E‖2→2 and LHS 6 RHS follows by
substituting E = I. Consequently we also know

γ2(A) = inf
BEC=A
‖E‖2→261

‖B‖2→X∗=‖C‖Y→2

‖C‖Y→2 · ‖B‖2→X∗ (53)

since whenever A = BEC we also have A = B′E′C′ where

E′ def
=

E
‖E‖2→2

, B′ def
=

√
‖E‖2→2‖C‖Y→2

‖B‖2→X∗
· B , C′ def

=

√
‖E‖2→2‖B‖2→X∗

‖C‖Y→2
· C

By AM-GM inequality we have

γ2(A) = inf
BEC=A
‖E‖2→261

‖C‖Y→2 · ‖B‖2→X∗ 6 inf
BEC=A
‖E‖2→261

(‖C‖2
Y→2 + ‖B‖2

2→X∗)/2 . (54)

Combining (54) with (53) yields

γ2(A) = inf
BEC=A
‖E‖2→261

(‖C‖2
Y→2 + ‖B‖2

2→X∗)/2 . (55)

Consider an optimal solution to (52). We will show (55) 6 (52) . We may assume without loss
of generality that U and V are invertible since for any ε > 0, adding (ε/max{‖I‖Y→2, ‖I‖2→X∗}) · I
to the block matrix in (52) maintains feasibility while increasing the objective value by no more
than ε. Thus the infimum in (52) may be taken over invertible U and V without changing the
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optimum value. We may now make the following substitution: B def
= U, C def

= V∗ and E def
=

U−1 A(V−1)∗.
Since BCE = A, it remains to show that ‖E‖2→2 6 1, and indeed we have,

[
UU∗ −A
−A∗ VV∗

]
� 0

⇔
[

U−1 0
0 V−1

] [
UU∗ −A
−A∗ VV∗

] [
(U−1)∗ 0

0 (V−1)∗

]
� 0

⇔
[

I −E
−E∗ I

]
� 0

⇔ ‖E‖2→2 6 1 . (56)

Finally, we need to show (52) 6 (55). So fix any optimal solution to (55) and by the same

reasoning as above, we may assume B and C are invertible. We then make the substitution U def
= B,

and V def
= C∗. Since BEC = A, we must have E := U−1A(V−1)∗. Feasibility of U, V then follows

from the chain of equivalences in (56).

5.2.2 An Alternate Proof of a Dual Characterization of γ2(A)

A classical Hahn-Banach result of Lindenstrauss and Pelczynski [LP68] (see for e.g. Theorem 2.4
in [Pis86] or Theorem 7.3.4 in [AK06] for a detailed exposition) gives a dual characterization of
γ2(A : Y → X∗) as the smallest constant C such that for all finite sequences (yi), (yj) satisfying

∑j yjy
∗
j � ∑i yiy∗i , it holds that ∑i ‖A yi‖2

X∗ 6 C2 ·∑j ‖yj‖2
Y. A dual reformulation (see chapter 2 in

[Pis86]) of this statement is that the dual norm of γ2(·), which we will denote by γ∗2(·), is given by

γ∗2(Z) def
= inf

UVW∗=Z ,‖V‖2→261

√
∑i ‖ui‖2

X ·
√

∑i ‖wi‖2
Y (57)

where ui (resp. wi) is the i-th column of U (resp. W)
In this section we give an alternate (perhaps more direct) proof of (57) using conic Lagrangian

duality.

Lemma 5.7 (Dual Characterization of γ2(·)).
For any linear operator A : Y → X∗, γ2(A) = (38) where (38) is defined as

max 〈A , Z〉
s.t. X ∈ ↓BSym

∧ (X) , Y ∈ ↓BSym
∧ (Y)

[
X Z
Z∗ Y

]
� 0 .

Proof. We will apply Lagrangian duality to the formulation (51) of γ2(A). Indeed by Lagrangian
duality for generalized (conic) inequalities (see theorem 2 on page 224 of [Lue97]; see also section
5.9 in [BV04]), we have

inf
(W1,W2)

{
Qmax

X (W1) + Qmax
Y (W2)

∣∣∣∣
[

W1 −A
−A∗ W2

]
� 0

}
(58)
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= max
(X,Y,Z)

{
inf

W1,W2�0
{Qmax

X (W1) + Qmax
Y (W2) + 2 〈A , Z〉 − 〈W1 , X〉 − 〈W2 , Y〉}

∣∣∣∣
[

X Z
Z∗ Y

]
� 0

}
.

where slater’s condition and therefore strong duality can be verified by the substitution W1 =
‖A‖2→2 · I, W2 = ‖A‖2→2 · I. By (31) we have

inf
W1�0
{Qmax

X (W1)− 〈W1 , X〉} =
{

0 if X ∈ ↓BSym
∧ (X)

−∞, otherwise .

Thus it follows that

inf
W1,W2�0

{Qmax
X (W1) + Qmax

Y (W2) + 2 〈A , Z〉 − 〈W1 , X〉 − 〈W2 , Y〉}

=

{
2 〈Z , A〉 if X ∈ ↓BSym

∧ (X), Y ∈ ↓BSym
∧ (Y)

−∞, otherwise .

Combining this with (58) yields the claim:

inf
(W1,W2)

{
(Qmax

X (W1) + Qmax
Y (W2))/2

∣∣∣∣
[

W1 −A
−A∗ W2

]
� 0

}

= max
(X,Y,Z)

{
〈A , Z〉

∣∣∣∣ X ∈ ↓BSym
∧ (X), Y ∈ ↓BSym

∧ (Y),
[

X Z
Z∗ Y

]
� 0

}
.

Pisier’s factorization theorem [Pis80] is now readily deduced from combining Lemma 5.7 with the
fact that (38) approximates Opmax

X,Y(A) (which is implicitly shown in Theorem 4.10 via Gaussian
rounding).

Theorem 5.8 (Algorithmic Pisier Factorization Theorem).

1. For any norms (‖·‖X, Rn) , (‖·‖Y, Rm) and any linear map A : Y → X∗, we have

Opmax
X,Y(A) 6 γ2(A : Y → X∗) 6 O(C̃2(X∗)C̃2(Y∗) log C̃2(X∗)C̃2(Y∗)) ·Opmax

X,Y(A) .

2. There is an algorithm ALG(A, R, r,OX,OY) such that if OX (resp. OY) is an α-approximate search
oracle for PSD quadratic maximization over an (R, r)-balanced norm (‖·‖X, Rn) (resp. (‖·‖Y, Rm)),
then on any input A ∈ Mn,m(R), ALG runs in time poly(m, n, log R, log 1/r, bit(A)) and returns
a factorization A = BC satisfying

γ2(A : Y → X∗) 6 ‖C‖Y→2 · ‖B‖2→X∗ 6 (1 + o(1)) · α · γ2(A : Y → X∗) .

Proof. Claim (1.) (i.e., Pisier’s factorization theorem) follows from combining Lemma 5.7 (dual
characterization of the factorization norm) with the fact that (38) approximates Opmax

X,Y(A) (which
is implicitly shown in Theorem 4.10 via Gaussian rounding).

For claim (2.), we will use the search oracles to construct an α-approximate separation oracle
for the following sets.

SX
def
= {W � 0 | Qmax

X (W) 6 1} , SY
def
= {W � 0 | Qmax

Y (W) 6 1} .
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Then Proposition 3.12 with

C1 ←
{ [

W1 −A
−A∗ W2

]
: W � 0

}
and f

( [
W1 −A
−A∗ W2

] )
← Qmax

X (W1) + Qmax
X (W2)

implies that we can compute a (1 + o(1))α-approximation to (52), whose optimal value is equal to
γ2(A : Y → X∗).

It remains to exhibit approximate separation oracles for SX and SY. We will construct an
oracle for SX and the case of SY will be analogous. To this end consider any W ∈ Mn(R). We may
assume W is PSD, since otherwise one can use the separation oracle of the cone of PSD matrices.
Let x be the output of OX(W). If 〈W , xx∗〉 6 1 we return “Inside” and if 〈W , xx∗〉 > 1 we return
{B | 〈B , xx∗〉 = 1} as a hyperplane separating W from SX. Indeed since x ∈ Ball(X), we have
〈B , xx∗〉 6 1 for any B ∈ SX. Lastly since 〈W , xx∗〉 6 ‖W‖X→X∗ 6 α · 〈W , xx∗〉, it is easily
checked that the above scheme satisfies all conditions of an α-approximate separation oracle for
SX.

5.3 Factorization Theorem for Quadratic Maximization under Bounded Type-2

In this section we apply the framework of "Gaussian rounding + conic Lagrangian duality" to
obtain a new factorization theorem for quadratic maximization under bounded Type-2. Here also
we are able to approximately compute the best factorization relative to an oracle for PSD instances.

To do this we first define an appropriate analogue of γ2(·) in the quadratic case and then give a
dual characterization of it.

For a norm (‖·‖X, Rn), and a symmetric n× n matrix A, we define the quadratic factorization
semi-norm as

γQ
2 (A) := inf

B∗CB=A
‖B‖X→`n

2
· λmax(C) · ‖B∗‖`n

2→X∗

= inf
B∗CB=A

‖B‖2
X→`n

2
· λmax(C)

= inf
W
{Qmax

X (W) |W � A, W � 0} (59)

where the proof of the third equality is a simpler version of the proof of Lemma 5.6. Analogous to
the bilinear (operator norm) case, conic Lagrangian duality yields a dual characterization of γQ

2 (·).

Lemma 5.9 (Dual Characterization of γQ
2 (·)).

For any norm (‖·‖X, Rn) and any symmetric n× n matrix A, we have

γQ
2 (A) = max

X
{〈A , X〉 | X ∈ ↓BSym

∧ (X)}

Proof. By Lagrangian duality for generalized (conic) inequalities (see theorem 2 on page 224 of
[Lue97]; see also section 5.9 in [BV04]), we have

inf
W
{Qmax

X (W) |W � A, W � 0} (60)

= max
(X,M)

{
inf

W�0
{Qmax

X (W) + 〈A , X〉 − 〈W , X〉 − 〈W , M〉}
∣∣∣ X, M � 0

}
.
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where slater’s condition and therefore strong duality can be verified by the substitution W =
λmax(A) · I. By (31) we have

inf
W�0
{Qmax

X (W)− 〈W , X + M〉+ 〈A , X〉} =
{
〈A , X〉 if (X + M) ∈ ↓BSym

∧ (X)

−∞, otherwise .

Substituting this in (60) yields

max
(X,M)

{
inf

W�0
{Qmax

X (W) + 〈A , X〉 − 〈W , X + M〉}
∣∣∣ X, M � 0

}

= max
X,M�0

{〈A , X〉 | X + M ∈ ↓BSym
∧ (X)}

= max
X�0
{〈A , X〉 | X ∈ ↓BSym

∧ (X)}

where the final equality follows since ∧↓Sym
X (·) is monotone in the Loewner ordering (equivalently

↓BSym
∧ (X) is downward-closed w.r.t. PSDn). This completes the proof.

Combining Lemma 5.9 with Theorem 4.5 yields

Theorem 5.10. For any norm (‖·‖X, Rn) we have

1. For any symmetric n× n matrix A,

Qmax
X (A) 6 γQ

2 (A) 6 T̃2(X)2 ·Qmax
X (A) .

2. There is an algorithm ALG(A, R, r,O) such that if O is an α-approximate search oracle for PSD
quadratic maximization over an (R, r)-balanced norm (‖·‖X, Rn), then on any input A ∈ Mn(R),
ALG runs in time poly(n, log R, log 1/r, bit(A)) and returns a factorization A = B∗CB satisfying

γQ
2 (A) 6 ‖B‖2

X→2 · λmax(C) 6 (1 + o(1)) · α · γQ
2 (A) .

Proof. The first claim follows from combining (60) (dual characterization of the factorization norm)
with the fact that (37) is a T̃2(X)2-approximation to Qmax

X (A). The latter fact can be proved via
Gaussian rounding (i.e., combining Observation 2.17 and Observation 4.1).

For the second claim, we will use the oracleO to construct an α-approximate separation oracle
for SX = {W � 0 | Qmax

X (W) 6 1} (just as in the proof of Theorem 5.8). Then Proposition 3.12 with

C1 ← {W |W � A, W � 0} and f (W) = Qmax
X (W)

implies that we can compute a (1 + o(1))α-approximation to (59).

6 Algorithmic Closure Properties of Quadratic/Bilinear Maximization

In this section we show that under bounded type-2 (resp. bounded dual cotype-2), constant factor
approximability of quadratic (resp. bilinear) maximization over X (resp. X, Y) is preserved un-
der the following operations: (a) Minkowski Sum (b) Intersection (c) Subspaces (d) Quotients (e)
Interpolation (resp. (a) Minkowski Sum (b) Quotients). Formally, we define T2-Quad-Apx (resp.
C2-Bi-Apx) as the set of norm sequences (Rn, ‖·‖Xn) (resp. (Rn, ‖·‖Xn) , (Rm, ‖·‖Ym)) satisfying the
following properties
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(C1) supn T̃2(Xn) < ∞ (resp. supn C̃2((Xn)∗), supm C̃2((Ym)∗) < ∞).

(C2) Xn (resp. Xn, Yn) is (nO(1), 1/nO(1))-balanced.

(C3) There is a poly(n) time algorithm computing ‖·‖Xn (resp. there is a family of poly(n)-time
algorithms ‖·‖Xn , ‖·‖Yn ) within a factor of 1 + 1/poly(n).

(C4) For an absolute constant C > 1, there is a poly(n, bitA) time randomized algorithm that
on any n × n input matrix A, with probability at least 1− n−ω(1) returns a C-approximate
solution x ∈ Ball(Xn) to Qmax

Xn (A) (resp. there is a family (ALGn,m)n,m∈N of poly(n, m, bitA)-
time search algorithms returning a C-approximate solution (x, y) ∈ Ball(Xn)× Ball(Ym) to
Opmax

Xn,Ym(A) given an n×m input matrix A).

The main result of this section is the following theorem (notation and definitions are given in the
sequel):

Theorem 6.1 (Algorithmic Closure Properties).
T2-Quad-Apx is closed under the following operations:
(1a) Minkowski Sum: (Xn), (Xn

) 7→ (Xn + Xn
).

(1b) Intersection: (Xn), (Xn
) 7→ (Xn ∨ Xn

).
(1c) Subspaces: (Xn), (En) 7→ (En, ‖·‖Xn).
(1d) Quotients: (Xn), (En) 7→ (Xn/En).
(1e) Complex Interpolation: (Cn, ‖·‖Xn), (Cn, ‖·‖Xn) 7→ ([Xn, Xn

]θ).

C2-Bi-Apx is closed under the following operations:

(2a) Minkowski Sum: ((Xn), (Ym)), ((Xn
), (Ym

)) 7→ (Xn + Xn
), (Ym + Ym

).
(2b) Quotients: ((Xn), (Ym)), (En), (Fm) 7→ (Xn/En), (Ym/Fm).

Remark 6.2.
- Above we assume we are given a polytime algorithm returning a generator matrix for any subspace in the

sequence (En) (resp. (Fm)).
- An interesting point to note above is that while bilinear maximization admits closure properties under the

milder assumption that C̃2(X∗) is bounded, quadratic maximization enjoys more closure properties albeit
under the stronger assumption of bounded T̃2(X). Indeed bounded C̃2(X∗) bilinear maximization is only
closed under Minkowski-sum/quotients whereas bounded T̃2(X) quadratic maximization is closed under
Minkowski-sum/quotients as well as the duals of these operations (namely intersection/subspaces). Thus
the bounded type-2 assumption is more robust for closure properties.

- (1c) and (2b) above are easy to establish and in fact hold without any type-2/cotype-2 assumptions.

Closure of (C1), (C2) and (C3) under the above operations is immediate (except in the case of com-
plex interpolation where closure of (C2) requires substantial work and was shown in [ANN+18];
closure of (C1) under complex interpolation is well known and follows from Riesz-Thorin inter-
polation). Thus we need only be concerned with closure of (C4) under all of the above operations.
We proceed to prove Theorem 6.1 one operation at a time.

6.1 Minkowski Sums

For norms ‖·‖X1 , ‖·‖X2 over Rn, we denote by X1 + X2 and X1 ∨ X2 the norms

‖x‖X1+X2

def
= inf

y+z=x
‖y‖X1 + ‖z‖X2 , ‖x‖X1∨X2

def
= max{‖x‖X1 , ‖x‖X2}
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which respectively correspond to the Minkowski sum and intersection of Ball(X1) , Ball(X2). It is
straightforward to check the duality relation (X1 + X2)∗ = X∗1 ∨ X∗2 .

It is easily verified that T̃2(X1 + X2) 6
√

2 ·max{T̃2(X1), T̃2(X2)} and so boundedness of
type-2 is preserved under Minkowski sum. Similarly C̃2((X1 + X2)∗) = C̃2(X∗1 ∨ X∗2 ) 6

√
2 ·

max{C̃2(X∗1 ), C̃2(X∗2 )} and so boundedness of dual cotype-2 is preserved under Minkowski sum.
In this section we show that approximation algorithms for quadratic (resp. bilinear) maximization
are also preserved under Minkowski sum when type-2 (resp. dual cotype-2) is bounded.

Our approach is to show the claim for PSD maximization first (which is immediate) and then
appeal to our reduction theorem from quadratic (resp. bilinear) to PSD maximization to obtain
the general case. Indeed the following fact is easy to check.

Qmax
X1+X2

(BB∗) = ‖B‖2
2→X∗1∨X∗2

= max{‖B‖2
2→X∗1

, ‖B‖2
2→X2
} = max{Qmax

X1
(BB∗) , Qmax

X2
(BB∗)} . (61)

Combining (61) and Theorem 4.5 immediately yields

Proposition 6.3 (Closure of Type-2 Quadratic Maximization under Minkowski Sum).
There is an algorithm ALG(A, R, r,OX1 ,OX2) such that if OX1 (resp. OX2) is an α-approximate search
oracle for quadratic maximization over an (R, r)-balanced norm (Rn, ‖·‖X1) (resp. (Rn, ‖·‖X2)), then on
any input A ∈ Mn(R), ALG runs in time poly(n, log R, log 1/r, bit(A)) and returns a β-approximate

solution to Qmax
X1+X2

(A) with probability 1− 2−Ω(n), where β
def
= 2α ·max{T̃2(X1)

2, T̃2(X2)2}.

The bilinear version follows from combining Proposition 4.15, Theorem 4.11, and (61):

Proposition 6.4 (Closure of Dual Cotype-2 Bilinear Maximization under Minkowski Sum).
Consider any pairs of norm sequences ((Xn) , (Ym)) ∈ C2-Bi-Apx and ((Xn

) , (Ym
)) ∈ C2-Bi-Apx (see

Section 6 for the definition of C2-Bi-Apx). Then ((Xn + Xn
) , (Ym + Ym

)) ∈ C2-Bi-Apx.

6.2 Intersection

Recall for norms ‖·‖X1 , ‖·‖X2 over Rn, the intersection Ball(X1) ∩ Ball(X2) is the unit ball of the
norm X1 ∨ X2 defined as

‖x‖X1∨X2

def
= max{‖x‖X1 , ‖x‖X2} .

It is easily verified that T̃2(X1 ∨ X2) 6
√

T̃2(X1)2 + T̃2(X2)2 and so boundedness of type-2 is pre-
served under intersection. We show that approximability of quadratic maximization is closed
under intersection by simply observing that the upper covariance body U (X1 ∨ X2) is equivalent
to the intersection of the upper covariance bodies U (X1) ,U (X2). Formally it is easily checked that
for any X ∈ PSDn,

max{NX1(X),NX1(X)} 6 NX1∨X2(X) 6 NX1(X) +NX1(X) 6 2 ·max{NX1(X),NX1(X)} (62)

where the first inequality follows immediately from Jensen’s inequality and the remaining in-
equalities are straightforward. Thus we have

1
2
· U (X1) ∩ U (X2) ⊆ U (X1 ∨ X2) ⊆ U (X1) ∩ U (X2) . (63)

We then obtain
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Proposition 6.5 (Closure of Type-2 Quadratic Maximization under Intersection).
There is an algorithm ALG(A, R, r,OX1 ,OX2) such that if OX1 (resp. OX2) is an α-approximate search
oracle for quadratic maximization over an (R, r)-balanced norm (Rn, ‖·‖X1) (resp. (Rn, ‖·‖X2)), then on
any input A ∈ Mn(R), ALG runs in time poly(n, log R, log 1/r, bit(A)) and returns a β-approximate

solution to Qmax
X1∨X2

(A) with probability 1− 2−Ω(n), where β
def
= 2α ·max{T̃2(X1)

2, T̃2(X2)2}.

Proof. By Proposition 4.13 we obtain T̃2(X1)
2-approximate and T̃2(X2)2-approximate separa-

tion oracles for U (X1) and U (X2) respectively. Therefore we obtain a max{T̃2(X1)
2 , T̃2(X2)2}-

approximate separation oracle for U (X1) ∩ U (X2). Combining this fact with Observation 3.4 and
(63) implies a 2 ·max{T̃2(X1)

2 , T̃2(X2)2}-approximate separation oracle for U (X1 ∨ X2). Finally
applying Proposition 4.2 completes the proof.

6.3 Quotients

Let ‖·‖X be a norm over Rn. For a subspace E of Rn, the quotient norm ‖X/E‖· is a norm defined
on the space X/E (which can be identified with the orthogonal complement E⊥) and is given by

‖x‖X/E
def
= min

y∈E
‖x− y‖X

i.e., the distance of x to the subspace E. The dual is the norm ‖·‖X∗ restricted to the subspace
E⊥, i.e.,

for any x ∈ E⊥, sup
ξ∈E⊥
‖ξ‖X∗61

〈ξ , x〉 = ‖x‖X/E and for any ξ ∈ E⊥, sup
x∈E⊥
‖x‖X/E61

〈x , ξ〉 = ‖ξ‖X∗ .

More generally we say a surjective linear map T : Rn → Rk (where k < n) is an (a, b)-quotient
map from X to Q if ‖T‖X→Q 6 a and Ball(Q) ⊆ b · TBall(X). It is easily checked that for any
x ∈ Rn, a−1 · ‖T(x)‖Q 6 ‖x‖X/ ker T 6 b · ‖T(x)‖Q. An obvious dual transposition implies that for
any x ∈ ker T⊥,

b−1 · ‖T(x)‖Q∗ 6 ‖x‖X∗ 6 a · ‖T(x)‖Q∗ . (64)

It is easily verified that T̃2(Q) 6 ab · T̃2(X) and so quotients of X inherit boundedness of type-
2. Similarly C̃2(Q∗) 6 ab · C̃2(X∗) and so quotients of X inherit boundedness of dual cotype-2. In
this section we show that approximation algorithms for quadratic (resp. bilinear) maximization
are also preserved under quotienting when type-2 (resp. dual cotype-2) is bounded.

Our approach again is to show the claim for PSD maximization first (which is immediate) and
then obtain the general case by appealing to our reduction theorem from quadratic (resp. bilinear)
to PSD maximization.

Given access to an oracle for T one can compute the linear map T† : Rk → ker T⊥ correspond-
ing to the inverse of T|ker T⊥

.

Fact 6.6. Consider any PSD matrix A = BB∗ ∈ PSDk. Then we have

1
b
· ‖B‖2→Q∗ 6 ‖T†B‖2→X∗ 6 a · ‖B‖2→Q∗ (by (64))

⇒ 1
b2 ·Q

max
Q (A) 6 Qmax

X (T† A(T†)∗) 6 a2 ·Qmax
Q (A) .
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Thus if x is an α-approximate solution to Qmax
X (T† A(T†)∗), then T(x) is an α · a2b2-approximate solution

to Qmax
Q (A).

Combining Fact 6.6 and Theorem 4.5 immediately yields

Proposition 6.7 (Closure of Type-2 Quadratic Maximization under Quotienting).
There is an algorithm ALG(A, R, r,OX,OT) such that if OX is an α-approximate search oracle for
quadratic maximization over a norm (Rn, ‖·‖X), ‖·‖Q is an (R, r)-balanced norm over Rk and OT is
an oracle computing an (a, b)-quotient map T : X → Q, then on any input A ∈ Mk(R), ALG runs in
time poly(n, log R, log 1/r, bit(A)) and returns a β-approximate solution to Qmax

Q (A) with probability
1− 2−Ω(n), where β = α · a2b2 · T̃2(Q)2 6 α · a4b4 · T̃2(X)2.

The bilinear case follows (without any type-2/cotype-2 assumptions) from the following straight-
forward generalization of Fact 6.6.

Fact 6.8 (Closure of Bilinear Maximization under Quotienting).
Consider norms (Rn, ‖·‖X) , (Rm, ‖·‖Y) , (Rk, ‖·‖P) , (R`, ‖·‖Q) admitting (a, b)-quotient maps S :
Rn → Rk from X to P and T : Rm → R` from Y to Q. Consider any k × ` matrix A. Then for
S†, T† defined as above, we have

1
b
· ‖A∗‖P→Q∗ 6 ‖T† A∗‖P→Y∗ 6 a · ‖A∗‖P→Q∗ (by (64))

and
1
b
· ‖A(T†)∗‖Y→P∗ 6 ‖S† A(T†)∗‖Y→X∗ 6 a · ‖A(T†)∗‖Y→P∗ (by (64))

Combining the above four inequalities (repeatedly) with the fact that Opmax
E,F(M) = ‖M‖F→E∗ =

‖M∗‖E→F∗ , yields
1
b2 ·Opmax

P,Q(A) 6 Opmax
X,Y(S

† A(T†)∗) 6 a2 ·Opmax
P,Q(A) .

Thus if (x, y) is an α-approximate solution to Opmax
X,Y(S

† A(T†)∗), then (S(x), T(y)) is an α · a2b2-
approximate solution to Qmax

Q (A).

6.4 Complex Interpolation

6.4.1 Interpolation Preliminaries

Let S def
= {z ∈ C | Re(z) ∈ (0, 1)} be the complex unit open strip, let ∂S denote its boundary and

lastly let S def
= S ∪ ∂S denote the closed unit strip.

Let F be the space of bounded continuous functions f : S → Cn that are holomorphic in
S . Given complex norms (Cn, ‖·‖X0) and (Cn, ‖·‖X1), and a parameter 0 < θ < 1, the complex
interpolant of X0 and X1 is defined to be the norm (Cn, ‖·‖[X0,X1]θ ) given by

‖x‖[X0,X1]θ
def
= inf

f∈F
f (θ)=x

max
{

sup
Re(z)=0

‖ f (z)‖X0 , sup
Re(z)=1

‖ f (z)‖X1

}
. (65)

Whenever the source and destination are labeled as X0 and X1 we will use the shorthand Xθ to
denote the interpolant [X0, X1]θ .

In this section we will be interested in quadratic and bilinear maximization over interpolants
Xθ . We obtain C-approximation algorithms for a constant C depending on T2(X0) and T2(X1). We
use the shorthand (X, Y)θ to denote the interpolant [(X0, Y0), (X1, Y1)]θ .
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6.4.2 Approximation Algorithms for Interpolants of Type-2 Norms

The main result of this section is that if quadratic maximization is computationally approximable
over type-2 norms (Cn, ‖·‖X0) and (Cn, ‖·‖X1), then it is also approximable over any interpolant
of X0 and X1:

Theorem 6.9 (Quadratic Maximization over Interpolants of Type-2 Norms.).
Fix any θ ∈ (0, 1). There is an algorithm ALG(A, R, r,OX0 ,OX1) such that if OX0 ,OX1

are α-approximate search oracles for quadratic maximization over (R, r)-balanced norms
(Cn, ‖·‖X0), (C

n, ‖·‖X1) respectively, then ALG runs in time poly(n, R, 1/r, bit(A)) and returns
a C-approximate solution to Qmax

Xθ
(A) with probability 1 − 2−Ω(n), where C = (1 + o(1)) · α ·

maxi∈{0,1}{T̃2(Xi)
4}.

Here again our approach is to reduce quadratic maximization to bilinear maximization and
then appeal to a factorization result of Kouba in order to solve the bilinear problem. Indeed The-
orem 6.9 follows from combining Theorem 4.5 with the following theorem

Proposition 6.10 (Bilinear Maximization over Interpolants of Type-2 Norms.).
Fix any θ ∈ (0, 1). There is an algorithm ALG(A,O(X0,Y0),O(X1,Y1)) such that if O(X0,Y0)

(resp. O(X1,Y1)) is and α-approximate search oracle for bilinear maximization over the pair of (R, r)-
balanced norms (Cn, ‖·‖X0), (Cm, ‖·‖Y0) (resp. (Cn, ‖·‖X1), (C

m, ‖·‖Y1)), then ALG runs in time
poly(n, m, R, 1/r, bit(A)) and returns a C-approximation to Opmax

Xθ ,Yθ
(A), where C = (1 + o(1)) · α ·

maxi∈{0,1}{T̃2(Xi)
2 · T̃2(Yi)

2}.
Moreover ALG returns a witness Z ∈ Ball(Xθ⊗̂Yθ) satisfying 〈A , Z〉 > Opmax

Xθ ,Yθ
(A)/C.

6.4.3 Proof of Proposition 6.10

Our approach is to use a result of Kouba [Kou91] who extended a factorization result of Pisier for
matrix valued analytic functions in order to obtain conditions under which ‖·‖[(X0,Y0),(X1,Y1)]θ and
Opmax

Xθ ,Yθ
(·) are equivalent.

Theorem 6.11 (Kouba [Kou91]). Let X0, X1 (resp. Y0, Y1) be norms over Cn (resp. Cm). Then for any
A ∈ Mn,m(C) we have

‖A‖(X,Y)θ
6 Opmax

Xθ ,Yθ
(A) 6 max

i∈{0,1}
{T̃2(Xi)

2 · T̃2(Yi)
2} · ‖A‖(X,Y)θ

‖A‖(X⊗̂Y)θ
> ‖A‖Xθ⊗̂Yθ

> min
i∈{0,1}

{T̃2(Xi)
−2 · T̃2(Yi)

−2} · ‖A‖(X⊗̂Y)θ

Armed with this equivalence, we need only approximate (X, Y)θ
def
= [(X0, Y0), (X1, Y1)]θ in order to

prove Proposition 6.10. Andoni et al. [ANN+18] show that given membership oracles for norms
W0, W1, Wθ can be computed using the ellipsoid method. We use their result with the substitution

W0
def
= X0⊗̂Y0 and W1

def
= X1⊗̂Y1

8 with the caveat that we only have approximate separation
oracles for W0, W1 and so we instead use the approximate ellipsoid method.

To this end note that ‖·‖(X⊗̂Y)θ

def
= ‖·‖[X0⊗̂Y0 ,X1⊗̂Y1]θ

is the dual norm of ‖·‖(X,Y)θ
and so

‖A‖(X,Y)θ

8We interpolate the projective norms along with the injective norms as the reduction from quadratic maximization
to psd maximization (Theorem 4.5) requires a ‘witness’ in order to apply.
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= sup
‖Z‖(X⊗̂Y)θ

61
〈A , Z〉

= sup
{
〈A , Z〉 | ∃ f ∈ F s.t. f (θ) = Z, ∀t ∈ R, ‖ f (i · t)‖X0⊗̂Y0

, ‖ f (1 + i · t)‖X1⊗̂Y1
6 1

}
(66)

where F is the set of matrix valued functions holomorphic on the strip S .
The following result of [ANN+18] states that F can be replaced with a set of functions hav-

ing only polynomially many non-zero fourier coefficients, thereby enabling us to formulate (66)
(approximately) as a convex program in polynomially many variables.

Lemma 6.12 (Lemma 5.11 + Claim 5.15 in Andoni et al.).
Fix any C > 1. Then there exists C′ > 1 and M, N, R 6 nC′ such that for any Z ∈ Ball((X⊗̂Y)θ), there
is a sequence of matrices (vq)q∈QM in Mn,m(C) such that

i. ∀z ∈ D
(0)
N ‖ fV(z)‖X0⊗̂Y0

6 1 + 1/nC

ii. ∀z ∈ D
(1)
N ‖ fV(z)‖X1⊗̂Y1

6 1 + 1/nC

iii. ∀q ∈ QM ‖vq‖H ·max{eq, 1} 6 nC′

iv. ‖ fV(θ)− Z‖H 6 1/nC

where fV(z)
def
= ez2/M · ∑

q∈QM

vq · eqz . (67)

Furthermore if for some Z ∈ Mn(C), a sequence (vq) satisfying (67) exists, then ‖Z‖(X⊗̂Y)θ
6 1 + 1/n.

We thus apply the approximate ellipsoid method to the following program

maximize 〈A , Z〉 such that

i. ∀z ∈ D
(0)
N ‖ fV(z)‖W0 6 1 + 1/nC

ii. ∀z ∈ D
(1)
N ‖ fV(z)‖W1 6 1 + 1/nC

iii. ∀q ∈ QM ‖vq‖H ·max{eq, 1} 6 nC′

iv. ‖ fV(θ)− w‖H 6 1/nC

where fV(z)
def
= ez2/M · ∑

q∈QM

vq · eqz

Z , vq ∈ Mn,m(C) . (68)

We are ready to prove our bilinear maximization result.

Proof of Proposition 6.10. By Theorem 3.14, O(X0,Y0) (resp. O(X1,Y1)) can be adapted to obtain a poly-
time α-approximate separation oracle for Ball(X0⊗̂Y0) (resp. Ball(X1⊗̂Y1)). Therefore by applying
Proposition 3.11 to the program (68) (where B ∈ Mn,m(C) is treated as an object in (R2)n×m), we
obtain Z ∈ Mn,m(C) such that 〈A , Z〉 = (1− o(1)) · ‖A‖(X,Y)θ

and (1− o(1))Z/α satisfies the con-
ditions of (67). Thus by Lemma 6.12 ‖Z‖(X⊗̂Y)θ

6 α(1 + o(1)) and furthermore by Theorem 6.11
(the trivial direction), ‖Z‖Xθ⊗̂Yθ

6 α(1 + o(1)). Again by Theorem 6.11 (the non-trivial direction),
〈A , Z〉 > (1− o(1)) ·mini∈{0,1}{T̃2(Xi)

−2 · T̃2(Yi)
−2} ·Opmax

Xθ ,Yθ
(A). This completes the proof since

(1− o(1))Z/α is the desired witness.
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6.5 Sections (Subspaces)

A section of a origin-symmetric convex body C is defined as the intersection of C with a subspace
V. Let X be the norm whose ball is C and let E denote the norm on the space V whose unit ball
is C ∩V. The corresponding quadratic maximization problem over E is to compute given a linear
map A : V → V, the following quantity

Qmax
E (A)

def
= sup

x∈C∩V
〈x , A(x)〉 .

It is easy to reduce Qmax
E (·) to Qmax

X (·). In fact, this holds without any type-2 assumption on X – a
fact that will come in handy for hardness reductions in Section 8. Indeed we have

Observation 6.13 (Enforcing a Subspace Constraint).
Let A be an n× n matrix, V ⊆ Rn be a subspace and X be a norm over Rn such that r ·Ball(`n

2) ⊆ Ball(X).

Let Π be the projector to V⊥ and let α
def
= Qmax

X (A′)/(n‖A′‖X→X∗). Let A′ def
= A− (rα)−2 ·Qmax

X (A) ·Π.
Then we have

sup
x∈Ball(X)∩V

〈x , Ax〉 6 Qmax
X (A′) 6 (1 + O(1/n)) · sup

x∈Ball(X)∩V
〈x , Ax〉

Proof. The first inequality is immediate. For the second inequality, consider any x ∈ Ball(X) that
maximizes 〈x , A′x〉. Decompose x as x‖ + x⊥ where x⊥ is the component of x in V⊥ and x‖ is
the component in V. We may assume ‖x⊥‖2 6 rα since otherwise 〈x , A′x〉 < 0 which would
contradict optimality of x. This implies that ‖x⊥‖X 6 α and therefore ‖x‖‖X 6 1 + α 6 1 + 1/n.
Finally we have

Qmax
X (A′) = 〈x , A′x〉 = 〈x‖ , A′x‖〉+ 〈x‖ , A′x⊥〉+ 〈x⊥ , A′x‖〉〈x⊥ , A′x⊥〉

6 〈x‖ , A′x‖〉 + (2(1 + α)α + α2) · ‖A′‖X→X∗

6 〈x‖ , A′x‖〉 + 4 ·Qmax
X (A′)/n

= (1 + O(1/n))〈x‖ , A′x‖〉/‖x‖‖2
X + 4 ·Qmax

X (A′)/n

= (1 + O(1/n))〈x‖ , Ax‖〉/‖x‖‖2
X + 4 ·Qmax

X (A′)/n

as desired.

7 Unconditional Algorithms for Special Families

In this section we study various special families of norms for which one can design separation ora-
cles for the lower covariance region L(X) using only a membership oracle for Ball(X). Thus using
Theorem 4.11 we obtain approximation algorithms for quadratic/bilinear maximization that re-
quire only a membership oracle for Ball(X). In doing so we recover constant factor approximation
algorithms for the cases studied previously in the literature and also obtain new results. We obtain
constant factor algorithms for the following norm families (see Section 7.1.1 and Section 7.3.1 for
definitions):

1. Quadratic maximization over exactly 2-convex sign-invariant norms with bounded q-
concavity for finite q. This recovers a result of Naor and Schechtman [NS09].
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2. Bilinear maximization over exactly 2-convex sign-invariant norms. This recovers (with a
worse constant) a result implicit in the work of Krivine [Kri73] and independently rediscov-
ered by Nesterov [Nes98].

3. Quadratic (resp. bilinear) maximization over symmetric norms (i.e., invariant to permu-
tation and sign changes) that have bounded type-2 (resp. bounded dual cotype-2). This
includes many new examples not covered in the exactly 2-convex case.

4. Quadratic (resp. bilinear) maximization over unitarily invariant matrix norms that have
bounded type-2 (resp. bounded dual cotype-2). This recovers as a special case (with a
worse constant) a result of Naor, Regev and Vidick [NRV13] for bilinear maximization over
Schatten-∞.

7.1 Approximation Algorithms for Sign Invariant Norms

We require some preliminaries.

7.1.1 p-convexity and q-concavity Preliminaries

The notions of p-convexity and q-concavity are well defined for a wide class of normed spaces
known as Banach lattices. In this document we only define these notions for finite dimensional
norms that are 1-unconditional in the elementary basis (i.e., those norms ‖·‖X for which flipping
the sign of an entry of x does not change the norm. We shall refer to such norms as sign-invariant
norms). Most of the statements we make in this context can be readily extended to the case of
norms admitting some 1-unconditional basis, but we choose to fix the elementary basis in the
interest of simplicity.

In what follows, for a scalar function s : R → R and a vector x ∈ Rn, we use the notation s(x) to
denote the vector obtained by entry-wise application of s to x, i.e., s(x) = (s(x1), . . . , s(xn)). For
e.g., |x|p denotes the vector (|x1|p, . . . |xn|p). This notation appears exclusively in Section 7.1.1 and
Section 5.

Definition 7.1 (p-convexity/q-concavity). Let X be a sign-invariant norm over Rn. Then for 1 6 p 6
∞ the p-convexity constant of X, denoted by M(p)(X), is the smallest constant C such that for every finite
sequence of vectors (xi) in X,

∥∥∥
(

∑i |xi|p
)1/p

∥∥∥
X
6 C ·

(
∑i ‖xi‖p

X
)1/p

We will say X is exactly p-convex if M(p)(X) = 1.

For 1 6 q 6 ∞, the q-concavity constant of X, denoted by M(q)(X), is the smallest constant C such that
for every finite sequence of vectors {xi} in X,

∥∥∥
(

∑i |xi|q
)1/q

∥∥∥
X
> 1

C ·
(

∑i ‖xi‖q
X
)1/q.

We will say X is exactly q-concave if M(q)(X) = 1.

Remark 7.2. Every sign-invariant norm is exactly 1-convex and exactly ∞-concave. It is also known (see
Lindenstrauss-Tzafriri) that any sign-invariant norm X is C-equivalent to an exactly p-convex norm (resp.
an exactly q-concave norm) for C depending only on M(p)(X) (resp. M(q)(X)).
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Fact 7.3. Let X be a sign-invariant norm over Rn. Then whenever |[x]| 6 |[y]| (entry-wise), it must be
that ‖x‖X 6 ‖y‖X.

For a sign-invariant norm ‖·‖X over Rn, and any 0 < p < ∞ let ‖·‖X(p) denote the function
‖|x|p‖1/p

X . X(p) is referred to as the p-convexification of X. It is easily verified that M(p)(X(p)) =

M(1)(X) and further that ‖·‖X(p) is an exactly p-convex sign-invariant norm if and only if ‖·‖X is
an exactly 1-convex sign-invariant norm.

We will appeal to a known equivalence between (2-convexity + (q<∞)-concavity) and Type-2 for
Banach lattices that is implicit in the following Khintchine-type inequality.

Theorem 7.4 (Banach Lattice Khintchine [Mau73]).
Let X be a sign-invariant norm over Rn. Then for any 1 6 p 6 2 6 q < ∞ and any finite sequence (xi)
and i.i.d. standard Gaussians (gi),

γp

M(p)(X)
·
∥∥∥
(

∑i |xi|2
)1/2

∥∥∥
X

6
√

E [‖∑i gi · xi‖2
X] 6 γq ·M(q)(X) ·

∥∥∥
(

∑i |xi|2
)1/2

∥∥∥
X

where γp
def
= Eg∼N (0,1) [|g|p]1/p.

Remark 7.5.

1. If X is exactly 2-convex then the constant in the left inequality can be taken as 1 since in this case
γ2/M(2)(X) = 1.

2. If X is exactly 2-concave then the constant in the right inequality can be taken as 1 since in this case
γ2 ·M(2)(X) = 1.

3. Since X is a sign-invariant norm, M(1)(X) = 1 and so the constant in the left inequality can always
be taken as γ1 =

√
2/π.

4. Since X is a norm, M(∞)(X) = 1 and so M(log n)(X) 6 e. Thus the constant in the right inequality
can always be taken as e · γlog n = (1 + o(1))

√
e log n.

Finally, we record the well known equivalence between 2-convexity and dual cotype-2 (see for
e.g. [Pis86]) for Banach lattices:

C̃2(X∗) . M(2)(X) . C̃2(X∗) log C̃2(X∗) .

7.1.2 Approximation Algorithms for Maximization over Exactly 2-Convex Norms

Naor and Schectman [NS09] gave an M(q)(X)2 · γ2
q-approximation algorithm for quadratic max-

imization over an exactly 2-convex norm X. We show how our framework for quadratic maxi-
mization (Proposition 4.2) recovers their result.

Theorem 7.6 (Quadratic Maximization over Exactly 2-convex Norms).
There is an algorithm ALG(A, R, r,OX) such that if OX is an oracle for exactly computing a sign-
invariant, exactly 2-convex, (R, r)-balanced norm (Rn, ‖·‖X1), then on any input A ∈ Mn(R), ALG
runs in time poly(n, log R, log 1/r, bit(A)) and returns a β-approximate solution to Qmax

X (A) with prob-

ability 1− 2−Ω(n), where β
def
= inf

26q<∞
M(q)(X)2 · γ2

q .
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Proof. For the domain X ∈ Mn(R) , X � 0, we define a computable convex function f as

f (X)
def
= ‖diag(X)‖X(1/2) = ‖diag(X)1/2‖2

X =
∥∥∥
(

∑i |xi|2
)1/2

∥∥∥
2

X
(69)

for any decomposition X = ∑
k∈[K]

xi(xi)
∗ .

Convexity is evident from the first equality above since exact 2-convexity of X implies X(1/2)

is a norm. Computability (using OX) is evident from the second equality above. Theorem 7.4
implies that NX(X) and f (X) are β-equivalent for the claimed β. Thus combining part (1.) of
Corollary 4.12 and Theorem 7.4 yields the claim.

Krivine [Kri73] observed that Grothendieck’s inequality extends (with the same constant KG)
to the case of bilinear maximization over exactly 2-convex lattices. Nesterov [Nes98] indepen-
dently rediscovered Grothendieck’s inequality (with constant ∼ 2.29) and also noted its extension
to the exactly 2-convex case.

We give an alternate proof of this result (with a worse constant) using our framework (Theo-
rem 4.11).

Theorem 7.7 (Bilinear Maximization over Exactly 2-convex Norms).
There is an absolute constant β > 1 and an algorithm ALG(A, R, r,OX,OY) such that ifOX (resp. OY) is
an oracle for exactly computing a sign-invariant, exactly 2-convex, (R, r)-balanced norm (Rn, ‖·‖X) (resp.
(Rm, ‖·‖Y)), then on any input A ∈ Mn,m(R), ALG runs in time poly(n, m, log R, log 1/r, bit(A)) and
returns a β-approximate solution to Opmax

X,Y(A) with probability 1− 2−Ω(n+m).

Proof. For the domain W ∈ Mn(R) , W � 0, we define a computable concave function f as

f (W)
def
= ‖diag(W)‖(X∗)(1/2) = ‖diag(W)1/2‖2

X∗ =
∥∥∥
(

∑i |xi|2
)1/2

∥∥∥
2

X∗
(70)

for any decomposition W = ∑
k∈[K]

xi(xi)
∗ .

Concavity is evident from the first equality above since exact 2-convexity of X implies (X∗)(1/2)

is concave. Computability (using OX) is evident from the second equality above. Theorem 7.4
implies that NX∗(W) and f (W) are equivalent within a universal constant. We proceed similarly
for Y. Thus combining Theorem 7.4 and part (B) of part (2.) of Corollary 4.12 yields the claim.

7.2 Approximation Algorithms for Symmetric Norms

In this section we will use Theorem 4.11 to give constant factor approximation algorithms for
quadratic (resp. bilinear) maximization over symmetric norms with bounded type-2 (resp. dual
cotype-2) constant (assuming only oracles computing the norms being optimized over).

To do so, we will design a separation oracle for the lower covariance region. We begin with a
technical ingredient common to all our proofs - namely that linear optimization over symmetric
downward/upward-closed subsets of the non-negative orthant can be done efficiently (assuming
only an approximate membership oracle for the set).
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7.2.1 Preliminaries: Linear Optimization over Symmetric Upward/Downward-closed Sets

The following lemma shows that one can efficiently minimize linear functions over a symmetric
upward closed subset of the non-negative orthant. This will be used in constructing a separation
oracle for the lower covariance region of a symmetric norm.

Lemma 7.8. Let K = (Rn
>0) be the positive orthant, and let B ⊆ K be a, permutation symmetric, upward-

closed, inverse (R, r, K)-balanced, and exactly convex body with a C-approximate membership oracle O.
Then for any ε > 0, there is a poly(n, R/r, 1/ log ε, bit(z))-time algorithm ALG that takes a vector
z ∈ Rn

>0 as input and outputs y′ with y′ ∈ B such that

inf
y∈B
〈z , y〉 6 〈z, y′〉 6 (C · (1 + ε)) inf

y∈B
〈z , y〉

Proof. Without loss of generality, assume r = 1. If zi = 0 for some i ∈ [n], the optimum is 0 since
R · ei ∈ B, and we are done. Otherwise, by sign-invariance, and scaling, we may assume z and the
optimal vector y∗ ∈ B satisfy 1 = z1 6 . . . 6 zn 6 nc, and y∗1 > . . . > y∗n′ = 1 > y∗n′+1 = · · · =
y∗n = 0. (I.e., the smallest nonzero entry of y∗ is 1.) Then OPT = 〈z, y∗〉 > 1, and since R · e1 ∈ B,
OPT 6 R. This implies that y∗1 6 R and zn′ 6 R. Let z and y∗ be their projections to the first n′

coordinates. (We do not know n′ in advance, but one can guess it with n tries.) We perform the
following operations to covert z and y∗ to nicer forms while approximately preserving 〈z, y∗〉 and
y∗ ∈ B.

- Round up each entry of zi to the smallest (1 + ε)t for some integer t > 0. The value
〈z, y∗〉 increases multiplicatively by a factor at most (1 + ε). Let L = dlog1+ε Re and Let
S0, . . . , SL ⊆ [n′] be the set of coordinates such that Si := {j ∈ [n′] : zj = (1 + ε)i}. Note that
S0, . . . , SL partition [n′] and they are “consecutive” in the sense that S0 contains the first |S0|
coordinates, S1 contains the next |S1| coordinates, . . . , and SL contains the last |SL| coordi-
nates.

- For i ∈ {0, . . . , L}, let ai := (∑j∈Si
y∗j )/|Si|, and change y∗ by setting y∗j = ai for all j ∈ Si

for all i ∈ {0, . . . , L}. Since the new y∗ can be written as a convex combination of coordinate
permutations of the old y∗, the convexity of B implies the new y∗ satisfies y∗ ∈ B. The value
〈z, y∗〉 does not change.

- Similarly to z, round up each entry of y∗i to the largest power of (1 + ε)t for some t > 0. The
value 〈z, y∗〉 increases multiplicatively by a factor at most (1 + ε). Since we only increased
coordinates of y∗, by upward-closedness of B, y∗ is still in B.

Therefore, for both z and y∗, the coordinates in the same Si have the same value, which is of
the form (1 + ε)t for some t ∈ {1, . . . , L}. The objective function 〈z, y∗〉 is at most (1 + ε)2OPT,
and y ∈ B. Note that we do not know y∗, but we can compute the new z and S0, . . . , SL given the
original z and correctly guessed n′.

Finally, we exhaustively search the coordinate values for y∗. Since we search for at most L + 1
different values and the number of possible values is also at most L + 1, the number of possi-
ble choices is bounded by 2O(L) = poly(R). Once we find the correct y∗, the C-approximate
membership oracle will at least correctly certify that Cy∗ ∈ B. The returned value is 〈Cy∗, z〉 6
C(1 + O(ε))OPT.

The next lemma states that one can efficiently maximize a linear function over a downward-
closed subset of the non-negative orthant.
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Lemma 7.9. Let Y be a sign-invariant, symmetric (under permutation), quasi-norm over Rn with
quasi-triangle constant C and an exact membership oracle O. Then for any ε > 0, there is an
poly(nO(1/ε), bit(z))-time algorithm ALG that takes a vector z ∈ Rn as input and outputs y′ ∈ Ball(Y)
such that

supy∈Ball(Y)〈z , y〉
(1 + o(1)) · C · (1 + ε)

6 〈z, y′〉 6 sup
y∈Ball(Y)

〈z , y〉

Proof. By symmetry and sign-invariance we may assume z as well as the optimal vector y∗ have
non-negative entries sorted in descending order. Without loss of generality we may assume z1 = 1
and ‖e1‖Y = 1, which implies that y∗1 6 1. Let OPT := 〈y∗, z〉. Since y = e1 is a feasible solution
with 〈y, z〉 = 1, it also implies that OPT > 1. We perform the following operations to covert z and
y∗ to nicer forms while approximately preserving 〈z, y∗〉.

- For any i ∈ [n], if zi or y∗i is less than 1/n3, make it 0. The value 〈z, y∗〉 decreases additively
by at most n2/n3 = 1/n 6 OPT/n.

- Round down each entry of zi to the largest power of (1− ε)t for some t > 0 while keeping
0 as 0. The value 〈z, y∗〉 decreases multiplicatively by a factor at most 1/(1− ε). Let L =
dlog1/(1−ε) n3e and Let S0, . . . , SL ⊆ [n] be the set of coordinates such that Si := {j ∈ [n] :
zj = (1− ε)i}. Let Sz := {j ∈ [n] : zj = 0}. Note that S0, . . . , SL, Sz partition [n] and they are
“consecutive” in the sense that S0 contains the first |S0| coordinates, S1 contains the next |S1|
coordinates, . . . , and Sz contains the last |Sz| coordinates.

- For i ∈ {0, . . . , L}, let ai := (∑j∈Si
y∗j )/|Si|, and change y∗ by setting y∗j = ai for all j ∈ Si

for all i ∈ {0, . . . , L}. Since the new y∗ can be written as a convex combination of coordinate
permutations of the old y∗, the quasi-triangle inequality implies that ‖y∗‖Y is increased by a
factor at most C. The value 〈z, y∗〉 does not change.

- Similarly to z, round down each entry of y∗i to the largest power of (1− ε)t for some t > 0
while keeping 0 as 0. The value 〈z, y∗〉 decreases multiplicatively by a factor at most 1/(1−
ε), and ‖y∗‖Y does not increase.

Therefore, for both z and y∗, the coordinates in the same Si have the same value, which is
of the form (1 − ε)t for some t ∈ {0, . . . , L} or 0. The objective function 〈z, y∗〉 is at least (1 −
1/n)(1− ε)2OPT, and ‖y∗‖Y 6 C. Note that we do not know y∗, but we can compute the new z
and S0, . . . , SL, Sz given the original z.

Finally, we exhaustively search the coordinate values for y∗. Since we search for at most L + 2
different values and the number of possible values is also at most L + 2, the number of possible
choices is bounded by 2O(L) = nO(1/ε). Once we fine the correct y∗, we can divide by C so that the
‖y∗‖Y 6 1. The returned value of 〈y∗, z〉 > (1−1/n)(1−2ε)

C OPT.

The following lemma shows that one can reduce linear function maximization over a unitarily
invariant subset of the positive semidefinite cone to an instance of linear function maximization
over a symmetric subset of the non-negative orthant. This will be used in constructing a separation
oracle for the lower covariance region of a unitarily invariant norm.

Lemma 7.10. Let Λ ∈ (R>0)n be a permutation symmetric set, and let B be the set of PSD matrices whose
eigenvalue sequence (y1, . . . , yn) belongs to Λ. Let A be an n× n PSD matrix, and let z1 > . . . > zn > 0
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be its eigenvalues. Then

inf
B∈B
〈A, B〉 = inf

y∈Λ
〈z, y〉, and sup

B∈B
〈A, B〉 = sup

y∈Λ
〈z, y〉,

and the optimal B ∈ B can be efficiently computed given the optimal solution y ∈ Λ.

Proof. Let A = ∑ ziuiuT
i be its eigendecomposition for some orthonormal basis {ui}. For any

y ∈ Λ, B = ∑i yiuiuT
i ∈ B satisfies 〈A, B〉 = ∑ ziyi, so infB〈A, B〉 6 infy〈z, y〉 and supB〈A, B〉 >

supy〈z, y〉. To prove the other direction, take any B ∈ B and let B = ∑i yiuiuT
i be its eigende-

composition with y ∈ Λ with y1 > . . . > yn > 0. Since 〈A, B〉 = ∑i,j ziyj〈vi, uj〉2 and both {ui}
and {vi} are orthonormal bases, ∑j〈vi, uj〉2 = 1 and ∑j〈vj, ui〉2 = 1. Therefore, 〈A, B〉 is max-
imized when vi = ui and minimized vi = un+1−i. Therefore, 〈A, B〉 ∈ [∑i ziyn+1−i, ∑i ziyi] ∈
[infy〈z, y〉, supy〈z, y〉].

7.2.2 Symmetric Type-2 Norms

In this section we will give an unconditional constant factor approximation algorithm for
quadratic (resp. bilinear) maximization over symmetric norms with bounded type-2 (resp. dual
cotype-2) constant.

We begin by constructing a separation oracle for the lower covariance region L(X) of a sym-
metric norm ‖·‖X.

Lemma 7.11 (Lower Covariance Separation Oracle for a Symmetric Norm with Bounded Dual Cotype-2).
For any (R, r)-balanced symmetric norm ‖·‖X over Rn the lower covariance region L(SX) has a
poly(n,log R, log 1/r, x) time α-approximate separation oracle with input x, assuming access to an oracle
OX computing ‖·‖X, where α . M(2)(X)4 = O(C̃2(X∗)4 log4(C̃2(X∗)).

Proof. Let F be the renorming of X that is symmetric, exactly 2-convex and satisfies ‖x‖F 6 ‖x‖X 6
M(2)(X) · ‖x‖X. We know F∗ is exactly 2-concave and therefore ‖·‖(F∗)(1/2) is a concave function on
Rn

>0 (we abuse notation and use ‖ · ‖(F∗)(1/2) even though it is not a norm). Similar to the proof of
Theorem 7.7 we define a concave function g : PSDn → R>0 and its associated convex level set Lg
as follows

g(W)
def
= ‖[diag(W)1/2‖2

F∗ = ‖diag(W)‖(F∗)(1/2)

Lg
def
= {W � 0 | g(W) > 1} .

Theorem 7.4 implies that NF∗(W) and g(W) are equivalent within a factor of π/2. Thus by Ob-
servation 3.4 it suffices to give a C-separation oracle for Lg since this would imply a C · π/2-
approximate separation oracle forL(F) and therefore a C ·M(2)(X)2 ·π/2-approximate separation
oracle for L(X).

Observe further that it suffices to design a separation oracle for the convex set L(F∗)(1/2)
def
=

{ξ ∈ Rn
>0 | ‖ξ‖(F∗)(1/2) > 1}. Indeed consider any W ∈ PSDn r Lg/C (if W 6� 0 then we may

use the separation oracle of PSDn). By definition diag(W) ∈ Rn
>0 r L(F∗)(1/2)/C and so there

exists a hyperplane {ξ | 〈h , ξ〉 = 1} that separates diag(W) from L(F∗)(1/2) . Thus the hyperplane
{M | 〈Diag(h) , M〉 = 1} separates W from Lg.
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To obtain a separation oracle for L(F∗)(1/2) , we combine Lemma 7.8 (i.e., (1 + ε)M(2)(X)2-
approximate linear minimization can be done over L(F∗)(1/2)) with Theorem 3.16 (i.e., linear mini-
mization over an upward-closed set implies a separation oracle). In order to ensure linear mini-
mization runs in poly(n) time, we need to ensure that L(F∗)(1/2) is inverse (R, r, Rn

>0)-balanced for
R/r = poly(n). This can be verified from the following simple inequalities:

‖ξ‖∞ 6
‖ξ‖(F∗)(1/2)

‖e1‖F∗
6 n2 · ‖ξ‖∞ ∀ξ ∈ Rn

>0

where the first inequality uses monotonicity of ‖·‖F∗ (in the entry-wise ordering) and the second
inequality follows from triangle inequality. Thus we obtain an O(M(2)(X)2)-approximate separa-
tion oracle for L(F∗)(1/2) running in time poly(n).

Finally we obtain

Theorem 7.12 (Maximization over Symmetric Norms under Type-2/Dual Cotype-2).
There are algorithms ALG1(A1,OX) and ALG2(A2,OX,OY) such that if OX (resp. OY) is an oracle
computing a symmetric norm (Rn, ‖·‖X) (resp. (Rm, ‖·‖Y)), then

- Quadratic: on any input A1 ∈ Mn(R), ALG1 runs in time poly(n, bit(A1)) and returns an α-
approximate solution to Qmax

SX
(A1) with probability 1− 2−Ω(n), where

α . T2(X)2 · C̃2(X∗)4 · log4 C̃2(X∗) 6 T̃2(X)6 log4 T̃2(X) .

- Bilinear: on any input A2 ∈ Mnd,mh(R), ALG2 runs in time poly(n, m, bit(A2)) and returns a
β-approximate solution to Opmax

SX ,SY
(A2) with probability 1− 2−Ω(n), where

β . max{C̃2(X∗)6 · log5 C̃2(X∗) , C̃2(Y∗)6 · log5 C̃2(Y∗)}) .

Proof. Without loss of generality we may assume ‖e1‖X = ‖e1‖Y = 1 since otherwise we can just
renormalize. ‖·‖X (resp. ‖·‖Y) is always (nO(1), n−Ω(1))-balanced (resp. (mO(1), m−Ω(1))-balanced)
since

‖x‖∞ 6
‖x‖X

‖e1‖X
6 n · ‖x‖∞ ∀x ∈ Rn

and ‖e1‖X = 1 by assumption.
Combining Theorem 4.11 with Lemma 7.11 yields the desired theorem.

Remark 7.13. Combining Proposition 5.3 and Lemma 7.9 yields an alternate proof of Theorem 7.12, achiev-
ing the approximation factor (1 + ε) · KG ·M(2)(X) ·M(2)(Y) ·max{M(2)(X)2, M(2)(Y)2}. In fact the
factor can be improved to (1 + ε) · KG · M(2)(X) · M(2)(Y) if one allows non-uniform algorithms with
quasipolynomial runtime.

We chose to present the above proof via Theorem 4.11 to highlight the generality of our approach and
furthermore because it generalizes well to the unitarily invariant case.

7.3 Approximation Algorithms for Unitarily Invariant Norms

In this section we will use Theorem 4.11 to give constant factor approximation algorithms for
quadratic (resp. bilinear) maximization over unitarily-invariant norms with bounded type-2 (resp.
dual cotype-2) constant (assuming only oracles computing the norms being optimized over). To
do so, we will design a separation oracle for the lower covariance region, for which we first require
some additional preliminaries.
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7.3.1 Preliminaries: Non-Commutative Khintchine Inequality

Let E be a symmetric norm over Rn (i.e., invariant to permutation and flipping signs of entries).

For a matrix M ∈ Mn,d(R) we define the norm ‖M‖SE

def
= ‖σ(M)‖E where σ(M) denotes the vector

of singular values of M (when d > n we assume σ(M) returns only the n largest singular values
of M – the rest are of course 0’s). We use the shorthand Cp for C`n

p
.

For a finite sequence of matrices (Mk)
K
k=1 in Mn,d(R), we define the norms (we refer the reader

to [LPP91] for a more detailed discussion of the these norms and their associated properties quoted
here):

‖(Mk)‖SE(`
2
R)

def
=
∥∥∥
√

∑k M∗k Mk

∥∥∥
SE

‖(Mk)‖SE(`
2
L)

def
=
∥∥∥
√

∑k Mk M∗k
∥∥∥
SE

‖(Mk)‖SE(`
2
R)∨SE(`

2
L)

def
= max{‖(M′k)‖SE(`

2
R)

, ‖(M′′k )‖SE(`
2
L)
}

‖(Mk)‖SE(`
2
R)+SE(`

2
L)

def
= inf

(Mk)=(M′k)+(M′′k )
‖(M′k)‖SE(`

2
R)
+ ‖(M′′k )‖SE(`

2
L)

.

For a finite sequence of matrices (Mk)
K
k=1 in Mn,d(R), we define the inner product 〈(Mk) , (Mk)〉 def

=

∑k〈Mk , Mk〉 = ∑k Tr(Mk M∗k ). It is a standard fact that SE(`
2
R) + SE(`

2
L) and (SE∗(`

2
R) ∨ SE∗(`

2
L) are

dual to each other, i.e.,

‖(Mk)‖(SE(`
2
R)+SE(`

2
L))
∗ = sup

‖(Mk)‖SE(`2
R)+SE(`2

L)
61
〈(Mk) , (Mk)〉 = ‖(Mk)‖SE∗ (`2

R)∨SE∗ (`2
L)

. (71)

We require the following matrix khintchine inequality due to Lust-Piquard and Xu [LPX07]

Theorem 7.14 (2-concave Matrix Khintchine Inequality).
There is an absolute constant C > 1 such that for any exactly 2-concave symmetric norm E and any finite
sequence of matrices (Mk)

K
k=1 in Mn,d(R) we have

1
C
· ‖(Mk)‖SE(`

2
R)+SE(`

2
L)

6
√

E
[
‖∑k gk ·Mk‖2

SE

]
6 ‖(Mk)‖SE(`

2
R)+SE(`

2
L)

.

where (gk)
K
k=1 is a sequence of i.i.d. standard Gaussians.

We define linear maps TL : PSDn·d → Mn(R) (resp. TR : PSDn·d → Md(R)) as

(TR(X))[i, j] def
= ∑

`∈[n]
X[(`, i), (`, j)]

(TL(X))[i, j] def
= ∑

`∈[n]
X[(i, `), (j, `)]

Note that for any decomposition X = ∑k∈[K] vec(Mk) vec(Mk)
∗ one has

TR(X) = ∑
k∈[K]

M∗k Mk

TL(X) = ∑
k∈[K]

Mk M∗k

where vec(H) denotes the (row-wise) nd-dimensional vector associated with the n× d matrix H.
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7.3.2 Unitarily Invariant Type-2 Matrix Norms

In this section we will give an unconditional constant factor approximation algorithm for
quadratic (resp. bilinear) maximization over unitarily invariant matrix norms with bounded type-
2 (resp. dual cotype-2) constant.

We first construct a separation oracle for the lower covariance region of a unitarily invariant
norm.

Lemma 7.15 (Separation Oracle for L(SE)).
For any (R, r)-balanced unitarily invariant matrix norm ‖·‖SE over Mn,d(R) the lower covariance region
L(SE) has a poly(n, d, log R, log 1/r, bit(x)) time α-approximate separation oracle on input x, assuming
access to an oracle OSE computing ‖·‖SE , where α = O(M(2)(E)6) = O(C̃2(E∗)6 log6(C̃2(E∗)).

Proof. Let F be the renorming of E that is symmetric, exactly 2-convex and satisfies ‖x‖F 6 ‖x‖E 6
M(2)(E) · ‖x‖F. For W ∈ PSDn·d, we define a concave function g non-decreasing in the Loewner
ordering as follows

g(W)
def
= sup

(Mk)

‖(Mk)‖SF∗ (`2
R)+SF∗ (`2

L)
(72)

where the supremum runs over all decompositions

W � ∑
k∈[2n2]

vec(Mk) vec(Mk)
∗ .

By Theorem 7.14 and monotonicity in the Loewner ordering ofNSF∗ (·), we concludeNSF∗ (W)1/2

and g(W) are equal within an absolute constant. g(W) is alternatively given by the following (not
exactly computable) convex program

sup Tr(Z) s.t.
‖TL(X)‖S

F(1/2)
, ‖TR(X)‖S

F(1/2)
6 1

[
X Z
Z∗ W′

]
� 0

W �W′

X , Z ∈ Mn·d(R) . (73)

Before verifying equivalence of the two definitions, we note that concavity of g follows easily from
(73) since whenever X1 , Z1 (resp. X2 , Z2) are feasible for W1 (resp. W2), λX1 + (1− λ)X2 , λZ1 +
(1− λ)Z2 are feasible for λW1 + (1− λ)W2. It follows that g(λW1 + (1− λ)W2) > λg(W1) +
(1− λ)g(W2).

Claim 7.16. (72) = (73).

Proof. To show (72) 6 (73), consider any sequence (Mk) and let (Mk) be any sequence satisfying
(such a sequence exists by (71)),

〈(Mk) , (Mk)〉 = ‖(Mk)‖SF∗ (`2
R)+SF∗ (`2

L)
where ‖(Mk)‖SF(`

2
L)

, ‖(Mk)‖SF(`
2
R)

6 1 .

The claim then follows by considering the substitution

X
def
= ∑

k
vec(Mk) vec(Mk)

∗ , Z def
= ∑

k
vec(Mk) vec(Mk)

∗ , W′ def
= ∑

k
vec(Mk) vec(Mk)

∗ .
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For the other direction, consider any X , Z , W′ feasible for W. By the spectral theorem there
exist sequences (Mk)k∈[K], (Mk)k∈[K] for K = 2n2, such that

X = ∑
k∈[K]

vec(Mk) vec(Mk)
∗ , Z = ∑

k∈[K]
vec(Mk) vec(Mk)

∗ , W′ = ∑
k∈[K]

vec(Mk) vec(Mk)
∗ .

Since ‖(Mk)‖SF(`
2
L)

, ‖(Mk)‖SF(`
2
R)

6 1, we have

Tr(Z) = 〈(Mk) , (Mk)〉 6 ‖(Mk)‖SF∗ (`2
R)+SF∗ (`2

L)
.

Taking (Mk) as the sequence in (72) then implies (72) > (73).

We define an upwards closed convex set B def
= {W � 0 | g(W) > 1} where convexity of B

follows from concavity of g and upward-closure follows from monotonicity of g (in the Loewner
ordering). By Claim 7.16, we know that infW∈B〈A , W〉 is alternatively given by

inf 〈A , W〉 s.t.
Tr(Z) > 1
‖TL(X)‖S

F(1/2)
, ‖TR(X)‖S

F(1/2)
6 1

[
X Z
Z∗ W′

]
� 0

W �W′

X , Z ∈ Mn·d(R) . (74)

By Proposition 3.12, it suffices to give an approximate separation oracle for

{X ∈ PSDn·d | ‖TL(X)‖S
F(1/2)

6 1} (resp. ‖TR(X)‖S
F(1/2)

) .

For this it suffices to give a separation oracle for the set S def
= {H ∈ PSDn | H ∈ Ball(SF(1/2))}.

By Lemma 7.10 and Lemma 7.9 for any fixed ε > 0, one can compute in oracle-polytime an
M(2)(E)4 · (1 + ε)-approximate solution to supH∈S〈M , H〉 for any M ∈ PSDn. So by linear func-
tion maximization duality for downward closed sets (Theorem 3.14) there is an oracle-polytime
algorithm to find an M(2)(E)4 · (1 + ε)-approximate separation oracle for S. Then by Proposi-
tion 3.12, we obtain an oracle-polytime algorithm to find an O(M(2)(E)4)-approximate solution to
(74) (i.e., linear function minimization over B).

Thus by linear function minimization duality for upward closed sets (Theorem 3.16), B admits
an M(2)(E)4 · (1 + ε)-approximate separation oracle. Recalling that by Theorem 7.14 L(SE) and
B are equivalent within O(M(2)(E))2 and applying Observation 3.4 yields the claimed separation
oracle for L(SE).

We are now ready to prove the main result of this section.

Theorem 7.17 (Maximization over Unitarily Invariant Norms under Type-2/Dual Cotype-2).
There are algorithms ALG1(A1,OSX ) and ALG2(A2,OSX ,OSY) such that if OSX (resp. OSY ) is an oracle
computing a unitarily invariant matrix norm (Mn,d(R), ‖·‖SX ) (resp. (Mm,h(R), ‖·‖SY)), then

- Quadratic: on any input A1 ∈ Mnd(R), ALG1 runs in time poly(n, d, bit(A1)) and returns an
α-approximate solution to Qmax

SX
(A1) with probability 1− 2−Ω(n), where

α . T2(X)2 · C̃2(X∗)6 · log6 C̃2(X∗) 6 T̃2(X)8 log6 T̃2(X) .
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- Bilinear: on any input A2∈Mnd,mh(R), ALG2 runs in time poly(n, d, m, h, bit(A2)) and returns
a β-approximate solution to Opmax

SX ,SY
(A2) with probability 1− 2−Ω(n), where

β . max{C̃2(X∗)8 · log7 C̃2(X∗) , C̃2(Y∗)8 · log7 C̃2(Y∗)}) .

Proof. Without loss of generality we may assume ‖e1e∗1‖SX = ‖e1e∗1‖SY = 1 since otherwise we
can just renormalize. ‖·‖SX (resp. ‖·‖SY ) is always (nO(1), n−Ω(1))-balanced (resp. (mO(1), m−Ω(1))-
balanced) since

‖M‖C∞ 6
‖M‖SE

‖e1e∗1‖SE

6 max{n, d} · ‖M‖C∞ ∀M ∈ Mn,d(R)

and ‖e1e∗1‖SE = 1 by assumption.
Combining Theorem 4.11 with Lemma 7.15 yields the desired theorem.

8 Hardness in the Absence of Type-2

In this section, we prove that if a sequence of norms (‖·‖Xn , Rn)n has T̃2(Xn) = nΩ(1), then a
constant-factor approximation algorithm for Qmax

Xn (·) will refute the (randomized) Small Set Ex-
pansion Hypothesis (SSEH) defined below. Given a d-regular graph G = (V, E) with n vertices
and δ ∈ [0, 1], let

Φ(δ) := min
S⊆V,|S|=δn

|E(S, V r S)|
d|S| .

Definition 8.1 (Gap Small Set Expansion (Gap-SSE) [RS10]). Given a regular graph G = (V, E) and
ε, δ > 0, the Gap Small Set Expansion problem Gap-SSE(ε, δ) asks to distinguish between

- YES: Φ(δ) 6 ε.

- NO: Φ(δ) > 1− ε.

Hypothesis 8.2 (Small Set Expansion Hypothesis [RS10]). For any ε > 0, there exists δ > 0 such that
Gap-SSE(ε, δ) is NP-hard.

Similarly, in the sequel we will say “Gap-SSE does not admit an algorithm of runtime T(n)”
to refer to the assumption that for every constant ε > 0, there exists δ > 0 such that no algorithm
of runtime T(n) solves the distinguishing problem Gap-SSE(ε, δ).

8.1 SSE-Hardness of `p-Quadratic Maximization when p < 2

Barak et al. [BBH+12] proved hardness of approximating 2→ 4 norm assuming the SSEH.
We will require a hardness result for 2→ q norm when q approaches 2 sufficiently slowly (i.e.,

q − 2 is subconstant in n). To do this we exploit the fact that in the reduction of [BBH+12] the
optimal vector in the completeness case does not depend on q. We then use interpolation to argue
that the soundness decays sufficiently slowly – here we make use of another special property of
the reduction, namely the instance is a projector and therefore the 2 → 2 norm is bounded. We
begin by stating the result of [BBH+12] (also see theorem 21 in [BBB+19] for details) with the
desired additional properties.
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Theorem 8.3 ([BBH+12]). Assuming SSEH, for any sufficiently small δ > 0, no polynomial time al-
gorithm can distinguish between the following two cases given an input matrix P ∈ Mn(R) satisfying
‖P‖2→2 6 1:

YES: ‖P‖2→q > (n/(10 · δ))1/2−1/q ∀q ∈ (2, ∞).

NO: ‖P‖2→4 6 2 · n1/4/δ1/8.

By interpolation (Holder’s inequality in this case) we obtain the following hardness result for
q approaching 2.

Corollary 8.4. Fix any θ ∈ (0, 1) and let qθ
def
= ((1− θ)/2 + θ/4)−1 = 4/(2− θ). Assuming SSEH,

for any C > 1, no polynomial time algorithm can approximate ‖·‖2→qθ
within a factor better than 1 + Cθ.

Proof. By Theorem 8.3 in the YES case we have

‖P‖2→qθ
> n1/2−1/qθ /(10 · δ1/2−1/qθ ) = (n/(10 · δ))θ/4 .

In the NO case by Holder’s inequality we have

‖P‖2→qθ
6 ‖P‖1−θ

2→2 · ‖P‖θ
2→4 6 (2n)θ/4/δθ/8 .

Thus we obtain a gap of 1/(20 · δ)θ/8 > 1 + (1/100) · θ · log 1/δ. Taking δ sufficiently small yields
the claim.

We next amplify the gap in the previous hardness result, and also adapt it to obtain hard-
ness results for `p-quadratic maximization when 1 < p < 2 (even for the case when p = p(n)
approaches 2 as n→ ∞).

Proposition 8.5 (`p-Quadratic Maximization Hardness for p < 2).

(1) Consider any fixed q > 2. Assuming the SSEH and that P 6= NP, there is no polynomial time constant
factor approximation algorithm for ‖·‖2→q.

(2) Consider any fixed q > 2, ε > 0. Assuming that Gap-SSE does not admit a quasi-polynomial time
algorithm, there is no polynomial time 2log1−ε n-approximation algorithm for ‖·‖2→q.

(3) Consider any increasing function f : R+ → R+ satisfying f (n) 6 n, and let g def
= f−1. For

any constant C > 1 there is a reduction running in time poly(g(m O(1))) from a size m instance of
Gap-SSE to the problem of obtaining a C-approximation to ‖·‖2→2+log f (n)/ log n.

(4) All results above extend to the case of q∗ → q norm.

(5) All results above extend to the case of Qmax
q∗ (B) (even for instances B with 0’s on the diagonal).

Proof. Since for any fixed q > 2 arbitrary constant SSEH-hardness of 2 → q norm was shown in
[BBH+12], (1) and (2) follow from amplifying the gap using the fact that ‖A⊗t‖2→q = ‖A‖t

2→q (see
[BGG+19]).

The proof of (3) proceeds again by amplifying the gap obtained in Corollary 8.4, the caveat
being that q now depends on the size of the matrix and so care must be taken in the calculations.

To this end, consider any constant C > 1. Let q(n) def
= 2 + log f (n)/ log n, q(m)

def
= q(g(m)) =
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2 + log m/ log g(m) and let t def
= log C · log g(m)/ log m. We set m = m(n) so that mt = n. By

Corollary 8.4 there is a reduction from Gap-SSE of size m = mΩ(1) to an instance A of `m
2 → `m

q(m)

with gap 1 + 10 log m/ log g(m). We then reduce to `n
2 → `n

q(m) by considering A⊗t and as claimed
we obtain a gap of at least

(1 + 10 log m/ log g(m))t > et log m/ log g(m) = C .

Since mt = n, we have n = poly(g(m)). Therefore the runtime of the reduction is poly(g(m O(1)))
as desired (where m is the size of the Gap-SSE instance).

(4) follows from combining (1), (2) and (3) with the observation that ‖AA∗‖q∗→q = ‖A‖2
2→q.

Lastly, (5) follows from combining (4) with the following claim:

Claim 8.6. For any p ∈ [1, ∞], there is a polytime computable matrix B = B(A) (with 0’s on the diagonal)
such that Qmax

p (B) 6 ‖A‖p→p∗ 6 2 ·Qmax
p (B).

Proof. Consider any A ∈ Mm,n(R) and let B ∈ Mm+n(R) be given by

B def
=

1
2
·
(

0 A
A∗ 0

)

Let p ⊕∞ p be the norm over Rm+n defined as ‖x ⊕ y‖p⊕∞ p
def
= max{‖x‖p, ‖y‖p}. Observe that

Qmax
p⊕∞ p(B) = ‖A‖p→p∗ . Further, it is easily checked that ‖·‖p⊕∞ p and `m+n

p are equivalent within a
factor of 2. Thus Qmax

p (B) and ‖A‖p→p∗ are within a factor of 2 as desired.

This completes the proof of Proposition 8.5.

Remark 8.7. Observe that if q(n) = 2 + O(1/ log n), then ‖·‖2→q(n) is equivalent to ‖·‖2→2 within
a constant and therefore admits a polytime constant factor approximation algorithm. Part (2) of Propo-
sition 8.5 provides an almost matching hardness result, i.e., assuming SSEH and ETH, for any q(n) =
2 + ω(log log n/ log n), there is no polytime constant factor approximation algorithm for ‖·‖2→q(n). We
speculate that one can bridge this small gap with a hardness result for the case of q(n) = 2 + ω(1/ log n).
One approach to establishing such a result would be to employ a more size-efficient gap-amplification pro-
cedure than tensoring (for example using random walks).

8.2 SSE-Hardness of Approximation when Type-2 Fails

We begin with some preliminaries.

8.2.1 Preliminaries: Embedding Copies of `k
p in X

To obtain more general hardness results we will require the notion of stable type. For 1 6 p 6 2,
the stable type-p constant STp(X) is defined analogously to Tp(X) with p-stable random variables
replacing rademachers. We also define a constant cp which will appear in the sequel. Let (Ei)i∈N

be an independent sequence of exponential random variables and let Γj
def
= ∑

j
i=1 Ei. Then we

define
cp

def
= E [| ∑

j∈N

Γ−1/p
j · ε j‖]
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where (ε j)j∈N is an independent sequence of rademacher random variables. It’s not hard to check
that cp & 1 (a fact we will use later).

We now state an important result of Pisier [Pis83] which states that for any 1 < p 6 2, norms
with large stable type-p constant contain large-dimensional isomorphic copies of `k

p.

Theorem 8.8 (Pisier’s Stable Type Theorem [Pis83]). Let X be a norm over Rn. Fix any 1 < p < 2

and ε > 0, and let δ(ε, p) def
= 2−p

p

(
εcp

2p∗+2

)p∗
. Then for any k < δ(ε, p) · (STp(X))1/p∗ , there is an n× k

matrix B such that for all a ∈ Rk,

(1− ε) · ‖a‖p 6 ‖Ba‖X 6 (1 + ε) · ‖a‖p .

The existence of the matrix B above is shown by a probabilistic construction. Below we check
that it can be efficiently sampled.

Corollary 8.9 (Efficient Sampling of [Pis83]).

Fix any 1 < p < 2 and ε > 0, and let δ(ε, p) def
= 2−p

p

(
εcp

2p∗+2

)p∗
. Let X = (Rn, ‖·‖X) be a normed

space and assume we are given a sequence of vectors x1, . . . xt ∈ Ball(X) with t = nO(1), and such that

E[‖∑i ε ixi‖2
X]

1/2 > f (n) ·
√

t. Then for k(n) = 2−p
100p

(
cp· f (n)

(p∗+1) n1/p−1/2

)p∗
, there is an n × k(n) random

matrix B that can be sampled in time nO(1/(2−p)), and a scalar C, such that with probability 1− 1/n4 it
holds that for all a ∈ Rk,

0.9 · C · ‖a‖p 6 ‖Ba‖X 6 1.1 · C · ‖a‖p .

Proof. We describe the distribution of an n× k random matrix B′ as specified in a presentation of
Theorem 8.8 in [MS86]. Let v be the Rn valued random variable given by choosing uniformly at
random from the set {x1, . . . xt}. Let (vi,j)i∈[k] ,j∈N be a double sequence of i.i.d. Rn-valued random
variables having the same distribution as v and similarly let (ε i,j)i∈[k] ,j∈N be a double sequence of
i.i.d. Rademacher random variables. Let B′i denote the i-th column of B′. Then each B′i (for i ∈ [k])
is given by

B′i
def
=

∞

∑
j=1

j−1/p · ε i,j · vi,j .

Let τ
def
= n50(2−p) and let B be an n× k random matrix whose i-th column Bi is given by

Bi
def
= ∑

16j6τ

j−1/p · ε i,j · vi,j .

It is shown in [MS86] (see Theorem 13.12 and Proposition 13.14) that with probability 1− 2−Ω(k),
it holds that for all a ∈ Rk,

0.99 · C · ‖a‖p 6 ‖B′a‖X 6 1.01 · C · ‖a‖p .

where C def
= E [‖B′1‖X]. We will show that w.h.p. B′′ def

= B′ − B has p→ X operator norm bounded
by C/n. Since ‖B′a‖X − ‖B′′‖p→X · ‖a‖p 6 ‖Ba‖ 6 ‖B′a‖X + ‖B′′‖p→X · ‖a‖p, this would imply
(for sufficiently large n) that

0.9 · C · ‖a‖p 6 ‖Ba‖X 6 1.1 · C · ‖a‖p .
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In what follows we assume WLOG that k 6 n 6 t. We proceed with showing ‖B′′‖p→X 6
C/t3/2 with probability at least 1 − Ω(1/t4). It suffices to show that ‖B′′i ‖X 6 C/t5/2 with
probability 1−Ω(1/t5), since by triangle inequality we have ‖B′′a‖X 6 ‖a‖1 ·maxi∈[k]‖B′′i ‖X 6
k1−1/p · ‖a‖p ·maxi∈[k]‖B′′i ‖X. To this end we have,

E
(vi,j)

[
E
(εi,j)

[‖B′′i ‖2
X]
]

= E
(vi,j)

[
E
(εi,j)

[‖∑16j6τ j−1/p · ε i,j · vi,j‖2
X]
]

6 n · E
(vi,j)

[
∑τ6j6∞ j−2/p · ‖vi,j‖2

X
]

(since T̃2(X) 6
√

n)

= n · ∑
τ6j6∞

j−2/p · E
(vi,j)

[‖vi,j‖2
X]

6 n · (∑`∈[t] ‖x`‖2
X/t) ·∑τ6j6∞ j−2/p (by definition of v)

6 n ·max
`∈[t]
‖x`‖X · ∑

τ6j6∞
j−2/p

.
n

τ2/p−1 ·max
`∈[t]
‖xi‖X (integration) .

Taking τ
def
= t20/(2−p) and applying Markov’s inequality implies that with probability 1−Ω(1/t5)

we have ‖B′′i ‖X 6 max`∈[t]‖xi‖X/t4.

By an analogous argument to above (this time using the cotype inequality C̃2(X) 6
√

n), we
conclude that

C = E [‖B′1‖X] & n−1/2 · E
(v)

[‖v‖2
X]

1/2 > max
i∈[t]
‖xi‖X/(

√
nt) .

This implies ‖B′′i ‖X 6 C/t5/2 as desired.

The truncation B of B′ can be computed in time tO(1/(2−p)) = nO(1/(2−p)) and this completes
the proof.

8.2.2 The Final Reduction

We are finally ready to prove our main hardness result. The core idea is to use Pisier’s stable type
theorem in order to encode an `p-quadratic maximization instance (for p < 2) as an instance of
quadratic maximization over a general norm X with large type-2. The proof is then completed by
appealing to hardness results for `p-quadratic maximization.

Theorem 8.10 (Hardness of Quadratic Maximization when Type-2 Grows Sufficiently Fast).

Let (‖·‖Xn , Rn)n∈N be a sequence of normed spaces and let f (n) def
= T̃2(Xn). Assume there is a poly(n)

time algorithm computing ‖·‖Xn , and an algorithm that on input n ∈N returns in poly(n) time a sequence
of vectors x1, . . . , xt ∈ Ball(Xn) satisfying

E [‖ ∑
i∈[m]

ε i · xi‖2
Xn ] & f (n) ·

√
t . (75)

Then we have

(1) If f (n) = nΩ(1), then assuming the SSEH and that NP 6⊆ BPP, there is no polynomial time algorithm
approximating Qmax

Xn (·) within a constant factor.
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(2) If f (n) = nΩ(1), then assuming Gap-SSE cannot be solved in randomized quasi-polynomial time, there
is no polynomial time algorithm approximating Qmax

Xn (·) within a factor of 2log1−εn.

(3) If for every constant C > 1, f ( f 1/C(n1/C)) = logω(1)n, then assuming Gap-SSE 6∈⋂
ε>0 RTIME(2nε

), there is no polynomial time algorithm approximating Qmax
Xn (·) within a constant

factor.

Proof. We proceed by reducing Qmax
`k

p
(·) to quadratic maximization over a subspace of Xn. Apply-

ing Observation 6.13 then completes the proof. We conclude (1) and (2) by appropriately choosing
p = p(n) and k = k(n) at the end.

By Corollary 8.9, setting k(n) def
= 2−p

100p

(
cp· f (n)

(p∗+1) n1/p−1/2

)p∗
, there is an n× k(n) random matrix B

that can be sampled in time nO(1/(2−p)), and a scalar C such that with probability 1− o(1), it holds
that for all a ∈ Rk,

0.9 · C · ‖a‖p 6 ‖Ba‖Xn 6 1.1 · C · ‖a‖p . (76)

Let B† be the k× n matrix defined as the linear map that maps x ∈ Rn to a ∈ Rk where a is such
that Ba is the projection of x onto the column span of B (note that a is unique since the columns of
B must be linearly independent in order to satisfy (76)). Let E be the column span of B. Then we
have for any H ∈ Mk(R)

sup
x∈Er{0}

〈x , (B†)∗HB†x〉
‖x‖2

Xn
= sup

a∈Rkr{0}

〈a , Ha〉
‖Ba‖2

Xn
� 1

C2 · sup
a∈Rkr{0}

〈a , Ha〉
‖a‖2

p

where the final step follows from (76). Thus H 7→ (B†)∗HB† is a valid reduction from quadratic
maximization over `k

p to quadratic maximization over the subspace E of Xn.

We are now ready to set parameters. Let p(n) def
= 2(1 + log f (n)/(2 log n))−1 (so that

f (n)/n1/p−1/2 =
√

f (n)). We then have the lower estimate

k(n) > f 1/5(n)/ log n (77)

where the choice of 1/5 above is not special - any sufficiently small constant will do.
For (1), it follows from (77) that if f (n) = nΩ(1), then k(n) = nΩ(1) and thus composing with

Proposition 8.5 part (1), we obtain a reduction from a size m instance of Gap-SSE to Qmax
Xn (·) where

n = mO(1). The runtime of the reduction is nO(1/(2−p(n))) = nO(1) = mO(1). This completes the
proof of (1).

For (2), it follows from (77) that if f (n) = nΩ(1), then k(n) = nΩ(1) and thus composing with
Proposition 8.5 part (2), we obtain a reduction from a size m instance of Gap-SSE to Qmax

Xn (·) where
n = mlogO(1) m. The runtime of the reduction is nO(1/(2−p(n))) = nO(1) = mlogO(1) m. This completes
the proof of (2).

For (3), it follows from (77) that if for every constant C > 1, f ( f 1/C(n1/C)) = logω(1)n, then
k(n) > f 1/5(n)/ log n > f 1/6(n) (where we use the fact that cp & 1) and thus composing with
Proposition 8.5 part (3), we obtain a reduction from a size m instance of Gap-SSE to Qmax

Xn (·) where
n = g(g(mO(1))O(1)) and g = f−1. Finally since for every C > 1, f ( f 1/C(n1/C)) = logω(1)n,
it follows that n = g(g(mO(1))O(1)) 6 2mo(1)

. The runtime of the reduction is nO(1/(2−p(n))) =

nO(1/ log n) = (2mo(1)
)mo(1)

= 2mo(1)
, which completes the proof of (3).
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Remark 8.11.

1. Theorem 1.3 in the introduction states that if T̃2(X) = nΩ(1) then Qmax
X (·) cannot be approximated

within a constant in polynomial time assuming the (randomized) small set expansion hypothesis.
This is implied by the above proof (with parameters set differently). Above, we chose to highlight two
settings of parameters we believed to be most interesting.

2. If Qmax
Xn (·) admits a polytime constant factor approximation, then (3) above necessitates in particular

that T̃2(Xn) grows slower than every function in the following series: 2logεn , 22log logεn
, · · · .

3. The assumption (75) of Theorem 8.10 may be removed in any of (1), (2), (3) provided one replaces
the assumption “there is no algorithm for Gap-SSE with runtime T(n)” by the stronger hypothesis
that “Gap-SSE cannot be solved by circuits of size T(n)”. In (1) for instance, this is equivalent to
assuming the SSEH and that NP 6⊆ P/poly.

4. By [FLM77] the type-2 constant of an n-dimensional normed space is attained up to a universal
constant factor for t = O(n2) vectors (see also [JN09] for the proof of this). In fact, by [TJ79] we
can take t = O(n). The assumption (75) of Theorem 8.10 states that such vectors can be found
efficiently. It is open whether or not it is possible to find such vectors using only polynomially many
calls to the assumed membership oracle for X; this would amount to making the proofs in [FLM77]
or [TJ79] algorithmic. If this were possible, then we could remove assumption (75). This nuance
is secondary to the main content of Theorem 8.10, namely to demonstrate that type-2 is inherently
linked to the computational complexity of quadratic maximization. We note that if one were only
interested in removing the assumption that vectors satisfying (75) could be found efficiently, then it
would suffice to do so using polynomially many calls to an oracle that approximates Qmax

Xn (·). But,
it is an independently interesting question to understand when it is possible to approximate type and
cotype constants efficiently.

9 Oracle Lower Bound for General Type-2 Norms

Our construction is identical to that of Brieden et al. [BGK+01] who gave a query lower bound
for approximating the `2-diameter of a convex body in the membership oracle model with the
caveat that a constant bound on Type-2 needs to be verified. We include the full analysis for
completeness.

9.1 The Construction

Fix any constant δ < 1/2 and let r def
= g/n1/2−δ ∈ Rn where g is a standard Gaussian random

vector (so that r has length nδ with probability 1− o(1)). Let ‖·‖X be the norm whose unit ball is
conv(Sn−1 ∪ {±r}).

9.2 Oracle Lower Bound

We now show that PSD quadratic maximization over general norms with bounded type-2 (and
therefore also bilinear maximization) cannot be approximated (within even no(1)).

Theorem 9.1 (Bounded Type-2 Hardness).
Consider constants δ ∈ (0, 1/2) and ε < 1− 2δ. Then for the random norm X over Rn defined as above
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(1) T̃2(X) . 1.

(2) For any fixed set S ⊆ Rn of size at most 2nε
, Ball(X) ∩ S = Ball(`n

2) ∩ S with probability 1− o(1).

(3) Opmax
X,X(I) = Qmax

X (I) = Ω(n2δ) with probability 1 − o(1), while on the other hand Opmax
`n

2 ,`n
2
(I) =

Qmax
`n

2
(I) = 1.

Proof. The squared `2-radius of Ball(X) is Ω(n2δ) w.h.p. by construction. (3) then follows from
observing that Qmax

X (I) is precisely the squared `2-radius of Ball(X).

We next establish (1). Let x1, . . . , xm ∈ Rn be a sequence of vectors. We may write xi/‖xi‖X as
a convex combination xi/‖xi‖X = λi · r + (1− λi) · yi where yi ∈ Ball(`n

2). Then for a sequence
(gi)i∈[m] of i.i.d. standard Gaussians we have

E
[
‖∑i gixi‖X

]

6 E
[
‖∑i gi · ‖xi‖X · (1− λi) · yi‖X

]
+ E

[
‖∑i gi · ‖xi‖X · λi · r‖X

]

6 E
[
‖∑i gi · ‖xi‖X · (1− λi) · yi‖2

]
+ E

[
‖∑i gi · ‖xi‖X · λi · r‖X

]

6
√

∑i ‖xi‖2
X + E

[
‖∑i gi · ‖xi‖X · λi · r‖X

]

=
√

∑i ‖xi‖2
X + ‖r‖X ·E

[
|∑i gi · ‖xi‖X · λi|

]

=
√

∑i ‖xi‖2
X + E

[
|∑i gi · ‖xi‖X · λi|

]

6 2 ·
√

∑i ‖xi‖2
X .

Lastly by Kahane-Khintchine inequality Theorem 2.1 we have E [‖∑i gixi‖X] & E [‖∑i gixi‖2
X]

1/2.
This completes the proof of (1).

Finally we shall establish (2). Consider any any fixed set S ⊆ Rn of size at most 2nε
(ε to be

chosen later) and let S′ def
= {v ∈ S | ‖v‖2 > 1}. Since Ball(`n

2) ⊆ Ball(X), we need only show that
S′ ∩ Ball(X) = ∅ with probability 1− o(1). We do so by exhibiting dual witnesses. Note that for
any v ∈ S′, we have 〈v , v/‖v‖2〉 > 1. So if v/‖v‖2 ∈ Ball(X∗), then we conclude v 6∈ Ball(X). Thus

in order to prove (2), it suffices to show that with probability 1− o(1), the set Ŝ def
= {v/‖v‖2 | v ∈ S}

is contained in Ball(X∗).
To this end note that Ball(X∗) is simply given by

{ξ ∈ Ball(`n
2) | |〈ξ , r〉| 6 1} = {ξ ∈ Ball(`n

2) | |〈ξ , g〉| 6 n1/2−δ} .

Thus showing that Ŝ ⊆ Ball(X∗) is equivalent to showing that supξ∈Ŝ |〈g , ξ〉| 6 n1/2−δ. Since

for each ξ ∈ Ŝ, 〈g , ξ〉 is a standard Gaussian, a standard union bound argument yields that with
probability 1− 1/|Ŝ|,

sup
ξ∈Ŝ

|〈g , ξ〉| .
√

log |Ŝ| . nε/2 .

Thus it suffices to take ε < 1− 2δ. This completes the proof.
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Remark 9.2. Note that the above theorem rules out the possibility of any approximation algorithm for PSD
quadratic maximization assuming only membership access to Ball(X). This follows from taking the set S to
be the set of queries made by the algorithm.

We conclude by noting that the above hardness result applies even to quadratic maximization
of matrices with 0’s on the diagonal (this is a special case considered frequently in the literature).
Let

A def
=

1
2
·
[

0 I
I 0

]
.

Further let ‖·‖X⊕∞X and ‖·‖`n
2⊕∞`n

2
be the norms over R2n given by ‖(x, y)‖X⊕∞X =

max{‖x‖X, ‖y‖X} and ‖(x, y)‖`n
2⊕∞`n

2
= max{‖x‖2, ‖y‖2}. From the simple observation that

supx,y∈Ball(X)〈x , y〉 = Qmax
X⊕∞X(A), we obtain the following corollary.

Corollary 9.3 (Bounded Type-2 Hardness even with 0’s on the Diagonal).
Consider constants δ ∈ (0, 1/2) and ε < 1− 2δ. Then for the matrix A and the norms X⊕∞ X , `n

2 ⊕∞ `n
2

over R2n defined as above, we have

(1) All diagonal entries of A are 0.

(2) T̃2(X⊕∞ X), T̃2(`n
2 ⊕∞ `n

2) . 1.

(3) For any fixed set S ⊆ Rn of size at most 2nε
, Ball(X⊕∞ X)∩ S = Ball(`n

2 ⊕∞ `n
2)∩ S with probability

1− o(1).

(4) Qmax
X⊕∞X(A) = Ω(n2δ) w.h.p., while on the other hand Qmax

`n
2⊕∞`n

2
(A) = 1.
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